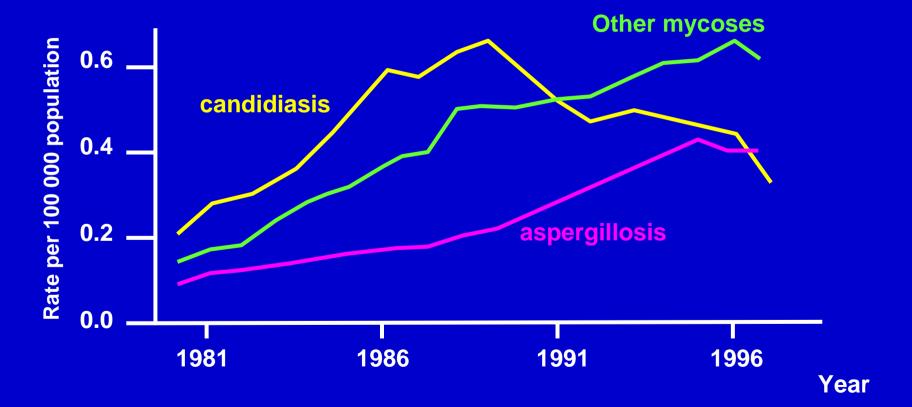
Antifungal Therapies in 2003: where do we go? (focusing invasive aspergillosis)

Johan A Maertens, MD Department of Haematology University Hospital Gasthuisberg Leuven, Belgium

Roadmap for This Talk

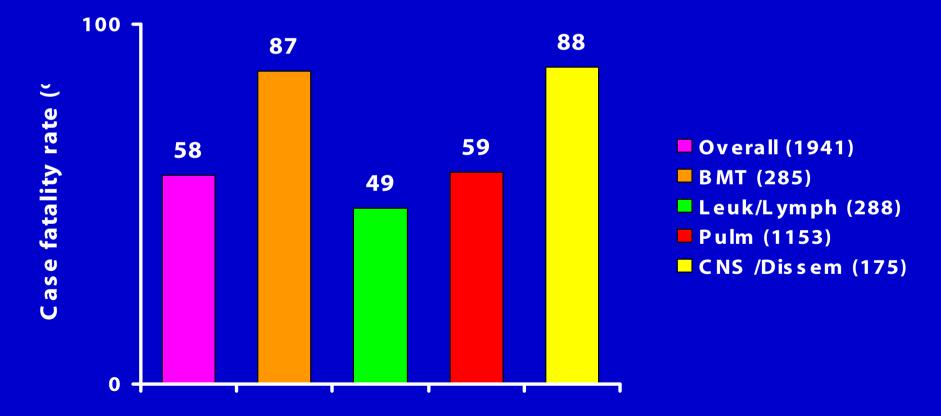
Therapeutic strategies


- What we have, what we need
- Introduction to new diagnostics invasive aspergillosis as example (5 slides!)

New agents: Two are licensed

- Voriconazole
- Caspofungin

Combination therapy: hype or hope?


Mortality in the US, 1980-1997, due to candidiasis, aspergillosis, and other mycoses in persons not infected with HIV

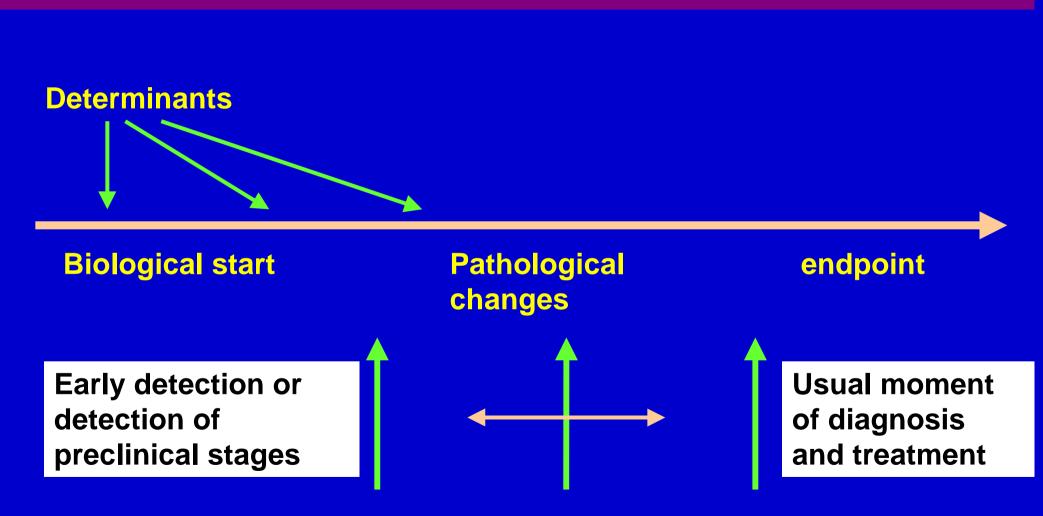
McNeil et al., Clin Infec Dis 2001:33

Invasive aspergillosis mortality: Review of literature after 1995

1941 patients from 50 studies

Lin et al., Clin Infect Dis 2001; 32: 358

Poor Treatment Results


Slide stolen from Dr. Ben de Pauw

late diagnosis low doses of antifungals

limited diagnostic options

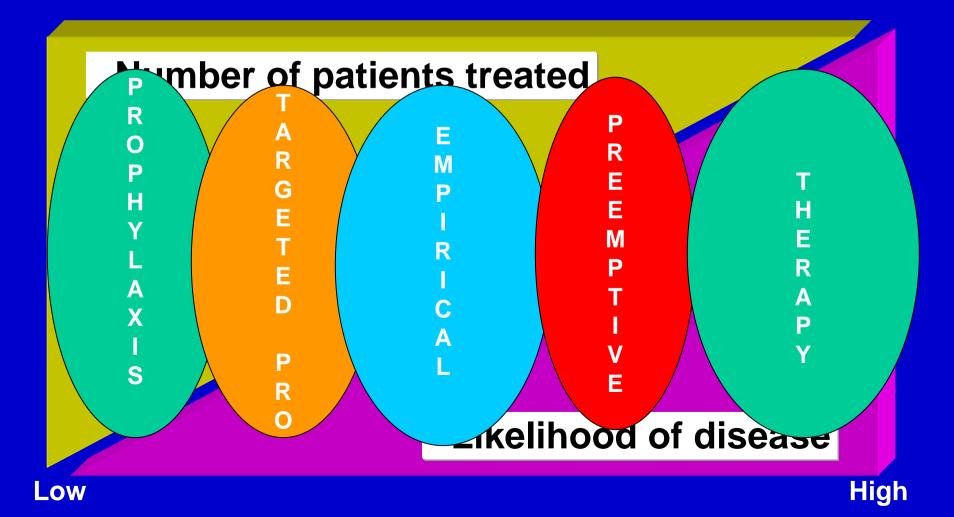
relatively toxic/ expensive therapy

Diagnosis of IFI

Can we prevent (or reduce the complications of) IFI by early interventions?

Antifungal prophylaxis

Based on the patient risk factors in the absence of infection

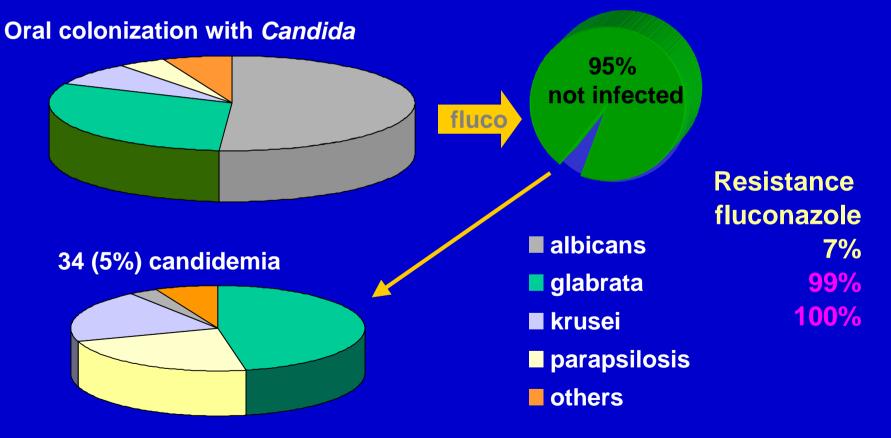

Empirical antifungal therapy

Patients with risk factors and *signs of infection* of unclear aetiology and the possibility of fungal origin

Pre-emptive antifungal therapy

Patients with risk factors + additional evidence for the presence of a fungal pathogen in a way predisposing for infection (e.g. additional diagnostic means/colonization Early therapy

Number of patients vs. likelihood of disease


Fluconazole Prophylaxis

Fluconazole prophylaxis in Hematology/HSCT is safe and effective and has been endorsed by consensus guidelines Goodman 1992; Slavin 1995; Marr 2000 Fluconazole prophylaxis reduces the risk of fungal infection in ICU **Pelz 2001; Garbino 2002** Fluconazole prophylaxis prevents superficial and invasive infections in liver transplant recipients Winston 1999 Fluconazole prophylaxis is effective in preventing invasive fungal infection in preterm infants Kaufman 2001

Although Flu prophylaxis is associated with fewer deaths from fungal infection, it does not improve overall survival

CANDIDA isolates and Candidemia in BMT after introduction of fluconazole prophylaxis

585 assessable patients

Marr et al., J Infect Dis 2000:309

What are the major fungal pathogens in high-risk patients?

Most common Candida spp. Aspergillus spp. Less common **Yeasts Trichosporon spp. Cryptococcus neoformans Filamentous fungi Fusarium spp.** Zygomycetes Scedosporium/Pseudallescheria **Dematiaceous moulds**

Itraconazole versus Fluconazole Winston et al. Ann Intern Med 2003; 138: 705 Marr et al. Blood 2003 (Oct)

- Open-label studies in myeloablative allogeneic HSCT
- Itraconazole provides better protection against mould infections
- Imbalances in patient characteristics
 - more unrelated donor Tx, more acute and chronic GvHD in fluconazole arm
- Itraconazole was associated with hepatotoxicity and more discontinuations (36 %) due to toxicity or GI intolerance

Not all hematology patients have the same risk: Targeted approaches?

High: >15%

Allo-BMT/PBSCT **Age >40** Non-CML **Graft failure Steroids GVHD** (II-IV) Summer No LAF? AML Age >55 **Poor performance** High dose Ara-C **Fludarabine**

Moderate: 5-10/15%

Allo-BMT/PBSCT Age 19-40 Mismatch Matched unrelated Construction Fail AML

low: 1-5%

Allo-BMT/PBSCT Age <19 CML, chronic phase Auto-PBSCT (BMT) Steroids (HD) Chemotherapy (HD)

Transplant-specific risk factors for invasive aspergillosis in organ transplant recipients

Liver transplant

- > Poor allograft function
- > Renal failure, especially requiring dialysis
- > Aspergillus colonization
- Lung transplant
 - > Cytomegalovirus disease
 - > Allograft rejection, obliterative bronchiolitis

Kidney transplant

- > Graft failure requiring reinstitution of hemodialysis
- > Intense immunosuppressive therapy

TARGETED PROPHYLAXIS IN LIVER TRANSPLANT RECIPIENTS REQUIRING DIALYSIS Singh et al. Transplantation 2001; 71: 910

Empirical antifungal therapy

The concept

- In high risk IC patients with persisting or relapsing infectious symptoms, the probability of developing invasive fungal disease is high (> 10-15 %).
- The mortality of established fungal disease remains high (40-80 %).
- Diagnostic sensitivity and specificity is poor.

Early empirical antifungal treatment is recommended

Empiric antifungal therapy

Challenging the concept

- All IC- or neutropenic patients are not the same: overtreatment.
- 'Fever' and 'resolution of fever' is a difficult criterion
- Toxicity of empirical treatment may be high.
- Local epidemiology and/or technology may change rapidly.
- Cost of empirical treatment may be high.

THE IDEAL STRATEGY

USE ONLY


- safe and effective antifungal drugs with spectrum adapted to local ecology and optimally adjusted dosage
- INCLUDE ONLY, BUT QUICKLY
 - patients with high probability of fungal disease, belonging to a well defined high risk category
- EXCLUDE CERTAINLY
 - patients with low risk profile or unlikely to have fungal disease
- RELY EXCLUSIVELY ON
 - optimal batteries of clinical, radiological and laboratory tests
- AVOID ALWAYS
 - indiscriminate primary prophylaxis
- ADOPT
 - early pre-emptive strategy (and secondary prophylaxis)

Diagnostic Tests and Techniques

- Histopathology
- Clinical Signs and Symptoms
- Standard radiography
- Culture
- Microscopy
- Antibody detection
- High-Resolution CT scan/Ultrasound
- Antigen detection
- PCR


DEVELOPMENT OF PULMONARY CAT-IMAGE Caillot et al. J Clin Oncol 2001; 19:253-9

Neutropenia

Air-space consolidation D 5-10 Air-crescent sign D 10 -20

Reliability of the Halo Sign

Greene et al. 13th ECCMID Glasgow 2003; Abstr. O397

Nodules in IA	Nodule	Nodule with Halo
Neutropenia	97 %	82 %
Hematological dis., no neutropenia	96 %	49 %
Non-hematological disorder	82 %	24 %

Halo sign or air crescent sign was confirmed by the DRC in 64% of patients entered into the study with a diagnosis of IPA based on CT alone!

Can GM detection be used as a surrogate marker for early (preemptive) therapy ?

- > Validation in non-hematology (non-neutropenic?) patients
- > Accuracy in different age groups
- Promising results in other body fluids, including CSF and BAL need further confirmation
- > Optimal threshold for positivity
- False-positive and false-negative results
- Role of anti-mould prophylaxis

No data on management strategies that incorporate GM / combined GM-CT

PCR (I)

Detection of a broad range of fungal pathogens (panfungal) and speciation in blood.

Early indicator of infection.

'Real-time' protocols allow quantitation of the amount circulating DNA (fungal load)

Variable performance partly due to non-standardization of the assays.

PCR (II)

In-house PCR assays Serum vs plasma vs whole-blood Different protocols for sample preparation Different fungal DNA segments

Commercialization → **standardization assay**

Automatisation → reproducibility and comparability

Molecular Approaches by PCR (blood)

Author	Patients/ controls	Number of samples	Sensitivity	Specificity	
Einsele 97	172/35	601	100	98	
Skladny 99	93/47	250	100	89	
Williamson 00	37/-	175	100	79	
Hebart 00	84/-	1193	100	65	
Hebart 00	92/-	333	100	73	
Lass-Flörl 01	121/-	619	75	96	
Buchheidt 01	218/60	907	91.7	81.3	

Molecular Approaches by PCR (blood)

Author	Patients/ controls	Number of sample:	PPV	NPV
Einsele 97	172/35	Coloniza		
Skladny 99	93/47	Contami	nation	
Williamson 00	37/-	175	80/100	100
Hebart 00	84/-	1193	15.2/27.8	100
Hebart 00	92/-	333	36.8	100
Lass-Flörl 01	121/-	619	42	98
Buchheidt 01	218/60	907	49.3	98

The antifungal agents

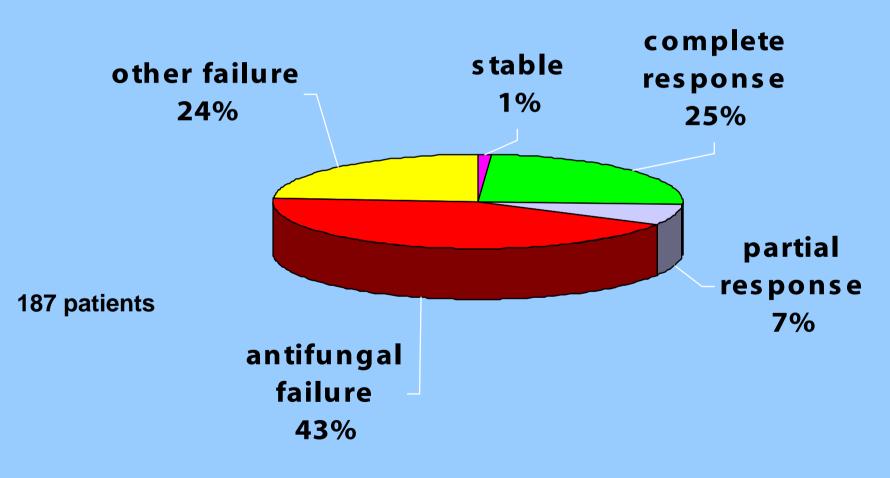
8

.....

Membrane function polyenes: amphotericin B, nystatin

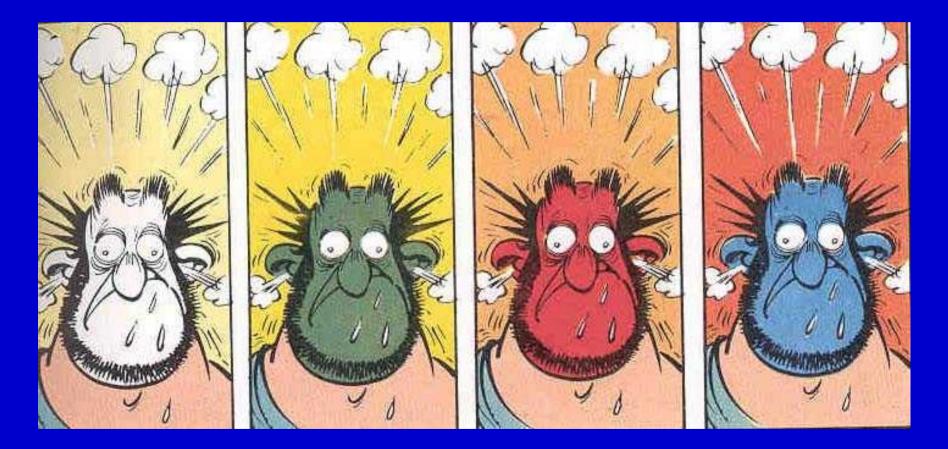
Metabolic inhibitors a-difluoromethylornithine Cispentacin

Nucleic acid function. Pentamidine


Nucleic acid synthesis 5-fluorocytosine Trimethoprim Sulfomethoxazole Cell wall synthesis Polyoxins Nikkomycins Papulacandins Echinocandins

> Ergosterol synthesis Azoles Allylamines/ thiocarbamates Morpholines

Nuclear division Griseofulvin Benomyl


Protein synthesis Blasticidin Sinefungin

Amphotericin B in invasive aspergillosis: End of therapy responses

Patterson et al, Medicine 2000; 79; 250

Ampho B effect

Courtesy of Dr. Ben de Pauw

Clinical significance of nephrotoxicity Wingard et al. CID 1999; 29: 1402

239 pts receiving AmB; mean duration 20 d

Cr > 2.5 mg/dL	29 %			
dialysis	14 %			
mortality	60 %			
Risk of dialysis				
allo BMT	6.34			
auto BMT	5.06			
Cr > 2.5	42.02			
Increased mortality				
dialysis	3.05			
AmB duration	1.03/d			
nephrotoxic agents	1.96			

Commercially available ampho B drugs

Generic name	Trade name	Manufacturer	FDA
Amphotericin B deoxycholate	Fungizone	Bristol-Myers Squibb	1958
Amphotericin B lipid complex (ABLC)	Abelcet	The Liposome Company	1995
Amphotericin B colloidal dispersion (ABCD)	Amphocil Amphotec	Sequus	1996
Liposomal amphotericin B (L-AmB)	Ambisome	Gilead	1997

Lipid formulation of ampho B

- Tissue penetration
- Efficacy in proven IF
- Toxicity
 - infusion-related
 - renal
 - liver
 - discontinuation
- Acquisition cost

Cost effectivenessOutpatient infusion

Abelcet lung > Ambisome Ampho B = Abelcet = Amphocil = Ambisome

Amphocil > AmphoB = Abelcet > Ambisome AmphoB > Amphocil AmphoB > Abelcet > = Ambisome AmphoB = Amphocil = Ambisome > = Abelcet Amphocil = Ampho B > Abelcet > = Ambisome Ambisome > Amphocil > Abelcet > AmphoB dose dependent no prospective data Ambisome > Abelcet > Amphocil > AmphoB Response rates, overall survival rates, and toxicities associated with lipid formulations of amphotericin B as first-line therapy for invasive fungal infections, relative to conventional amphotericin B therapy, according to published randomized trials.

			Rate relative to conventional AmB			nB
					Toxicity	
Reference	Pathogen(s)	Agent	Clinical response	Survival	infusional	renal
Leenders et al	Mixed	L-Amph	Same	Same	Lower	Lower
Leenders et al	Cryptococcus species	L-Amph	Same	Same	Lower	Lower
Anaissie et al	Candida species	ABLC	Same	Same	Same	Lower
Bowden et al	Aspergillus species	ABCD	Same	Same	Greater	Lower
Hamill et al	Cryptococcus species	L-Amph	Same	Same	Lower	Lower
Johnson et al	Histoplasma capsulatum	L-Amph	Greater	Greater	Lower	Lower

Itraconazole: End of therapy responses

595 patient survey

58 itraconazole capsules

Highly selected

patients

 Few highly patients immunosuppressed

Clinical responses:

CR/PR: 33/58 (56%)

Patterson et al, Medicine 2000; 79; 250

The New Azoles & The Candins

Image Courtesy of M. McGinnis Copyright © 2000 Doctorfungus Corporation

The New Broad-Spectrum Azoles

Voriconazole, Now licensed **Oral and IV forms** Posaconazole. Phase III **Oral only, at least at present Ravuconazole.** Phase II. Limited public data Oral for sure, IV is hopeful Others for which we don't have time Albaconazole (UR-9825), CS-758, etc.

What makes the new azoles special?

1. A promise of better *Candida* activity All work for *C. albicans, tropicalis, parapsilosis* C. glabrata (MIC90, 48h) Flu: 32, Vori: 1, Posa: 2, Ravu: 2 *C. krusei* (MIC90, 48h) Flu: > 64, Vori: 1, Posa: 0.5, Ravu: 0.5 Neutropenic guinea pig model Vori reduced kidney CFU/g better than AmB or Flu

What makes the new azoles special?

2. Potent anti-Aspergillus activity A. fumigatus (MIC90 at M38-P's MIC-2) Itra: 2, Vori: 0.5, Posa: 0.25, Ravu: 1 A. flavus Itra: 0.5, Vori: 1, Posa: 0.5, Ravu: 1 These newer azoles often appear fungicidal Vori: Sterilized valves in *A. fumigatus* endocarditis model Posa: Also sterilizes tissue in some models Ravu: Less data. At least equal to Itra & AmB

Pfaller AAC 46:1032, '02; Martin AAC 41:13, '97; Graybill JAC 42:539, '98; Petraitiene AAC 45:857; Kirkpatrick JAC 49:353, '02

What makes the new azoles special?

3. Other fungi ... More active, but they differ! Fusarium (Vori & Posa. Limited data on Ravu) Vori: ~50% salvage rate. Licensed for this **Posa: Sterilized organs in an animal model** Scedosporium (Vori, Posa, Ravu) Vori: ~50% salvage rate. Licensed for this. Posa, Ravu: Not a lot of clinical data as yet Encouraging in vitro data (both) & case reports (Posa) **Zygomycetes (Posa)** Active in vitro and in vivo. Quite encouraging. See ASH 2003.

Lozano-Chiu AAC 43:589, '99; Carrillo AAC 45:2151, '01; Mellinghoff CID 34:1648, '02; Sun AAC 46:2310, '02

What remains problematic? Drug Interactions and Pharmacokinetics (PK)

Interference with critical concomitant medications:

- Dosing adjustments, discontinuations, or avoidance to prevent toxicity (e.g., CsA)
- Difficulty in predicting CsA and tacrolimus blood concentrations
- CYP450 drug-drug interactions can result in:
 - Antifungal failure: if induction of metabolism occurs
 - Potentiation of effect of concomitant therapies \rightarrow toxicity
- Unpredictable PK:
 - Potential for toxicity as plasma concentrations rise more than expected with increasing doses of antifungal

Adverse Events

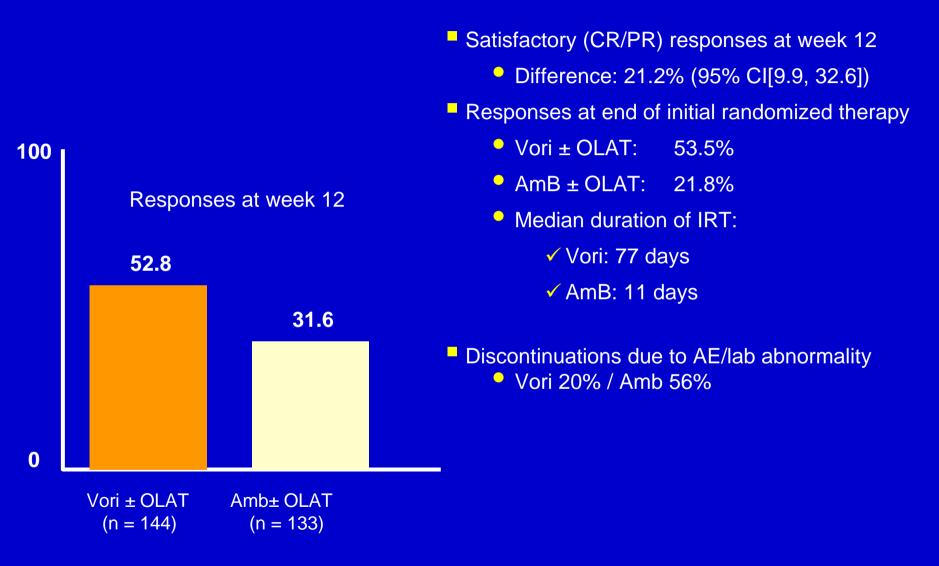
Hepatic

Overall rate of 13%. ~ **2-fold more than Flu**

Visual

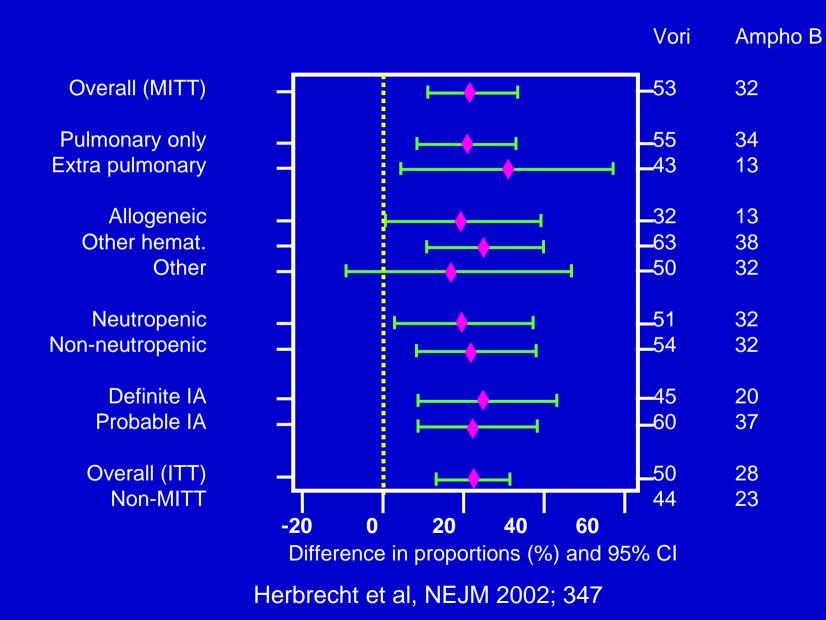
Noted by ~30%. A sense of altered light perception, blurring, or photophobia

EXHAUSTIVELY studied. No apparent consequences.


Miscellaneous

Photosensitivity (~1%)? Avoid strong sunlight.

Renal function and IV form

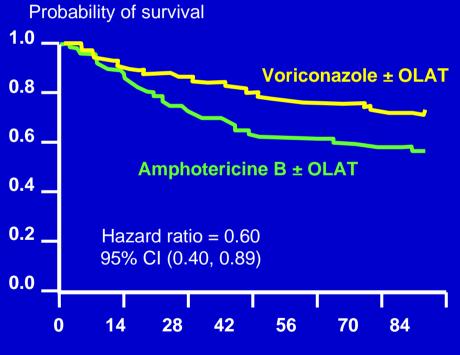

Sabo Ann Pharmacother 34:1032, '00; Voriconazole package insert, May 2002; Voriconazole FDA Advisory Cmte, '01

Global comparative aspergillosis study

Herbrecht et al, NEJM 2002; 347

Week 12 successful response rate (%)

Global comparative aspergillosis study: Survival


Survival at week 12

Vori ± OLAT: 70.8%

AmB ± OLAT: 57.9%

Vori 20% / Amb 56%

Discontinuations due to AE/lab abnormality

Number of days of therapy

Herbrecht et al, NEJM 2002; 347

48h NCCLS M27 MIC, 2000 bloodstream isolates

Vori MIC follows Flu MIC

VORI MIC

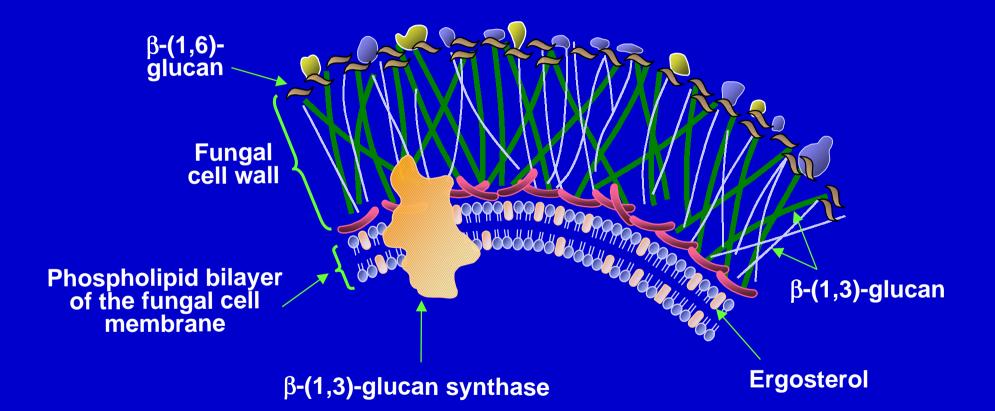
mcg/ml	0.06	0.13	0.25	0.5	1	2	4	<u>> 8</u>
0.13	196	1	1		1	1		
0.25	383	3	2	2	2		1	5
0.5	346	9	3	3	2	1	1	5
1	228	26	5	3		2		8
2	87	20	5	3		1	1	5
4			25		4		1	4
8	21	55	66	35	5	4		1
16	5	8	25	48	35	2	1	
32	5	4	21	15	27	5	1	3
<u>≥</u> 64	21	Ź	5	16	12	16	18	31

FLU MIC

Vori for Refractory Candidiasis

A series of patients have been collected from several different studies Salvage therapy protocol **Compassionate use protocol 106 enrolled** Candidemia: 21, 48% overall response Other invasive: 34, 41% overall response EC: 51, 61% overall response

Voriconazole summary


Usage Lots of drug interactions, significant subject-to-subject PK variability, follow liver enzymes Microbiology Aspergillus Impressive results in a well-done trial Candida Need more data Fusarium & Scedosporium **Response rates at least equal historical data**

The 'Unmet' Need

• Fungicidal activity against the most common pathogens, incl. azole-resistant *Candida* species and all *Aspergillus* species.

- No potential for cross-resistance
- Safety profile allowing continued therapy (esp. renal and hepatic)
- No cytochrome P450 drug-drug interactions
- Simple and predictable pharmacokinetics
- Cost-effective

CASPOFUNGIN – ANIDULAFUNGIN - MICAFUNGIN

Spectrum of Activity

Spectrum of activity includes *Candida albicans*, non-*albicans Candida* spp., and *Aspergillus* spp.

- fungicidal for Candida spp.
- 'fungistatic' against Aspergillus spp.
 MIC and in vitro/vivo data
 Efficacy proven in animal models

No cross-resistance to *Candida* spp. with intrinsic or acquired resistance to fluconazole, amphotericin B, or flucytosine No activity against *Cryptococcus neoformans* Activity against other fungi less well defined

Pharmacokinetics and Metabolism

Poor oral bioavailability Loading dose followed by maintenance **PK differences** Long plasma half life : anidula > mica > caspo Volume of distribution: anidula > mica > caspo **Unbound fraction: anidula > caspo > mica Metabolism and elimination** Not a substrate for nor an inhibitor of the cytochrome P-450 enzyme system Metabolized by the liver (ex. anidula) + spontaneous chemical degradation No urinary excretion

Safety and Interactions

Excellent safety and tolerability profile No dosage adjustments required for adults due to:

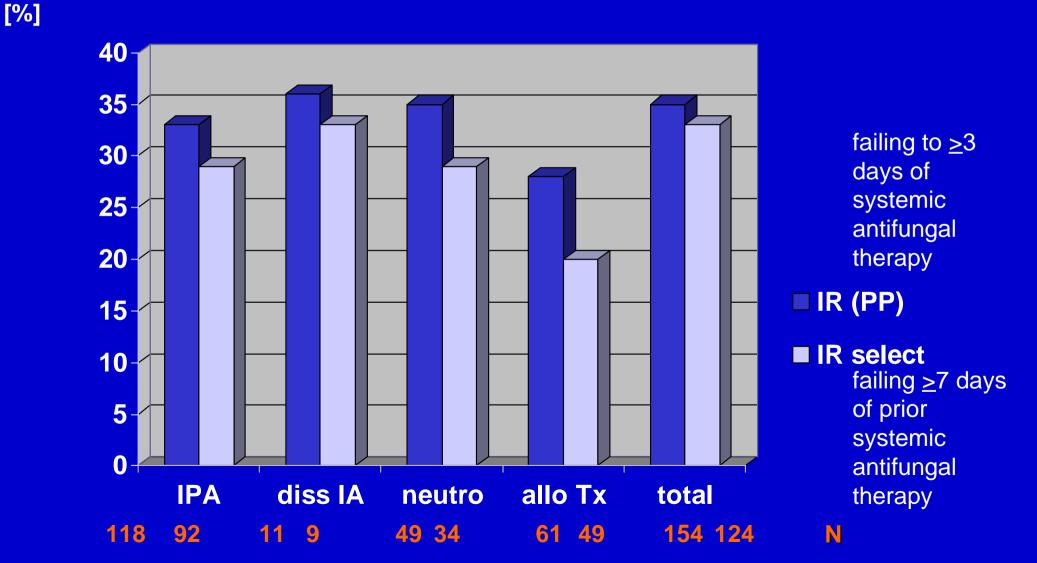
Age Gender Weight Ethnicity **Concomitant medications Hepatic insufficiency Renal insufficiency Disease status**

Inducers of drug clearance; CyA Severe hepatic insufficiency

ECHINOCANDINS Clinical Development Programs

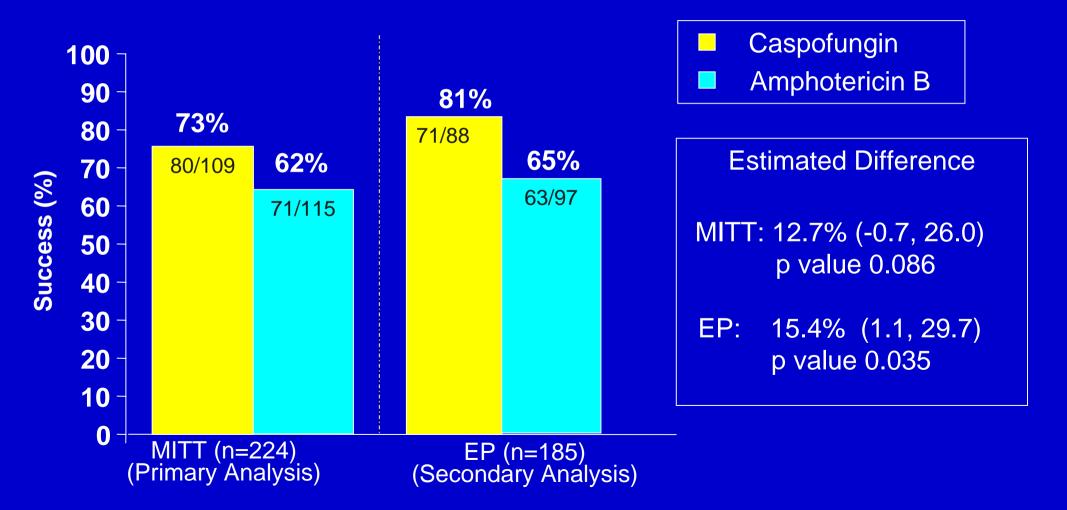
	Caspo	Anidula	Mica
Prophylaxis	+	-	RCT Mica vs. Fluco in HSCT
<i>Empiric</i>	RCT Caspo vs. Ambisome	-	-

ECHINOCANDINS Clinical Development Programs

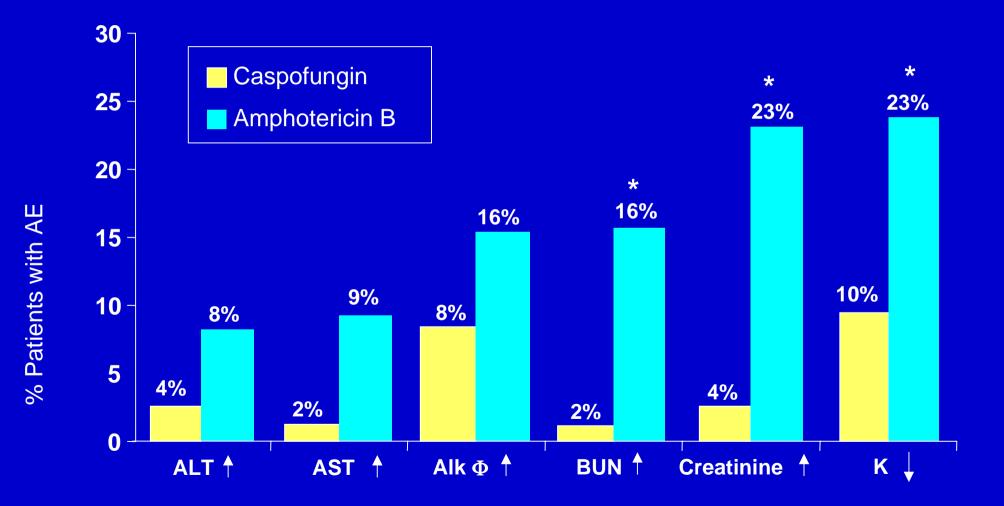

	Caspo	Anidula	Mica
Candida esophagitis	RCT Caspo vs. fluco	RCT Anidula vs. fluco	+
Invasive Candidiasis	RCT Caspo vs. ampho B	+	+
Invasive Aspergillosis	Open phase II (sal)	-	Open phase II (prim & sal)
Combination Therapy	-	-	Open phase II (prima & sal)

Efficacy outcome at the end of caspofungin therapy

Anglucio	Favorable outcome on caspofungin			
Analysis	n/m	%	95% CI	
Primary (MITT)	37/83	44.6	(33.7, 55.9)	
Complete response	4	5		
Partial response	33	40		
Secondary (EP)	37/66	56.1	(43.3, 68.3)	
Complete response	4	6		
Partial response	33	50		


Maertens, et al. ICAAC 2002 (M-868)

ECCMID 2003 Glasgow: Courtesy of Dr. A. Ullmann



Invasive Candida: Overall Efficacy Results

Overall Response at End of IV Therapy

Drug-related Laboratory Adverse Experiences (Candida)

* P < 0.05

Echinocandins and biofilms

'Antifungal susceptibility of Candida biofims: unique efficacy of Ampho B lipid formulations and echinocandins'

Kuhn et al. AAC 2002; 46: 1773

'In vitro activity of caspofungin against Candida abicans biofilms'

Bachmann et al. AAC 2002; 46: 3591

'In vitro pharmacodynamic properties of antifungal agenst against preformed candida albicans biofilms determined by time-kill studies'

Ramage et al. AAC 2002; 46: 3634

Micafungin and Candidaemia Ostrosky-Zeichner et al. 13th Focus on Fungal Infections

46 C. albicans	85%
30 C. glabrata	93 %
21 C parapsilosis	86 %
11 C. tropicalis	82 %
9 C. krusei	67 %
4 other	100 %

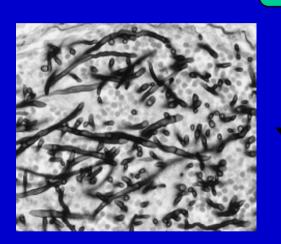
New infection	88 %
Refractory	76 %
26 neutropenic	73 %
Non-neutropenic	86 %
17 HSCT	82 %
101 adults	<mark>85 %</mark>
18 pediatric pts	72 %
7 neonates 86 %	

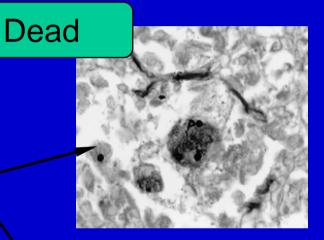
Conclusions: Things we know about candins

Spectrum of activity:

- Fungicidal against all Candida spp.
- Inhibits growth of Aspergillus
- No clinically meaningful activity against 'emerging fungi'
 - Efficacy data from animal studies and clinical phase II and III trials
- Azole cross-resistance is unlikely:
 - Novel mechanism of action: act directly at fungal cell wall
- **PK:**
 - Long half-life, single daily dosing, minimal renal clearance
- Safety profile:
 - excellent safety profile
 - no CYP450 drug-drug interactions
 - Manageable interaction with inducers of drug clearance
 - No dose adjustments in renal (and mild hepatic) impairment

Conclusions: Some things we need more info


Activity


- in primary treatment of invasive aspergillosis and in prolonged neutropenic patients
- efficacy in CNS involvement (other body sites)
- pediatric patients and neonates
- Combo?
- Mechanism and development of resistance/selection
- PK:
 - MTD
 - Importance of PK differences
- Safety profile:
 - CyA and caspo
 - Dose adjustments in moderate/severe hepatic impairment

The Hot Topic Echinocandins in Combination?

Distinct molecular targets possible synergy? - Ergosterol synthesis - Fungal cell wall membrane ergosterol - Fungal cell wall (glucan synthesis) Lowered dosing of potentially toxic drugs **Reduced risk of antifungal resistance?** Increased fungistatic/fungicidal action may be useful in compromised hosts

Pulmonary aspergillosis (A. fumigatus) Persistently neutropenic rabbits Petraitis, et al. AAC 42:2898, 1998

AmB, 1 mg/kg/d ~1.5 log ↓ CFU/g

Control

Courtesy of Dr. John Rex

AFG, 10 mg/kg/d No ↓ CFU/g

Not quite dead

IN VITRO DATA	Type of interaction		
Combo	Synergy	Add/Indiff	Antagonism
Itra + Cas	+		
Itra + Mica	+	+	
Vori + Cas	+	+	
Vori + Mica		+	
Posa + Cas	+		
Amb + Cas	+	+	
Amb + Mica	+	+	
L-amb + Mica		+	

Steinbach, et al. Clin Infect Dis 2003; 37 (Suppl 3): S188-224

Caspofungin plus Voriconazole: animal model

Kirkpatrick WR et al.: AAC 2002, 46: 2564-68

- Immunosuppressed transiently neutropenic guinea pig model of IA
- Mortality occurred in 12 of 12 untreated controls
- Mortality in 4/12 treated with 1 mg/Kg/day and 6/12 with 2.5 mg/Kg/day of caspofungin
- No mortality occurred with CAS plus VRC (or VRC alone)

CAS plus VRC was the only regimen that significantly reduced the number of positive cultures

Ravuconazole and micafungin significantly reduced mortality and residual fungal burden in persistently neutropenic rabbits Petraitis et al. J Infect Dis 2003; 187: 1834-43

Human Data?

> Denver¹

Retrospective studies !!!

- 1 35 patients (28/7) with IA and different combinations
- ! Combo 22 vs. mono 13
- ! Mortality 68.2 % vs. 84.6 % (p = 0.43)
- > MD Anderson²
 - ! 48 patients (5/18/25) with IA receiving CAS + L-Amb
 - ! ORR 42 % (22 % proven/probable vs. 60 % possible)
 - ! 53 % primary vs. 35% salvage
- > MSKCC³
 - 1 30 patients (6/4/20) with Amb-refractory IFI CAS + (L) Amb
 - ! 60% had a favorable response

¹O'Connor, ICAAC 2003 M-997; ² Kontoyiannis, Cancer 2003; 98: 292; ³Aliff, Cancer 2003; 97: 1025

Micafungin +/- ampho B +/- azole in refractory aspergillosis in BMT recipients

Ratanatharathorn et al, ASH 2002, # 2472

Patients subgroup	Response Rate (PR + CR by investigator)	
All patients	33/85 (39%)	28 % expert
Adults	27/69 (39%)	panel
Children	6/16 (38%)	
Allogeneic transplants	30/75 (40%)	
Autologous transplants	3/10 (30%)	
Neutropenic patients	7/22 (32%)	
GvHD	14/40 (35%)	
Proven/probable	32/49%	

Conclusion

- Epidemiology: growing importance of non-albicans Candida species and Aspergillus species.
- Strategies:
 - Therapy for proven infections is often delayed (too late!)
 - New diagnostic tools are available but not yet fully incorporated in decision making
 - Targeted prophylaxis and early empirical therapy remain the best options but may be gradually replaced by pre-emptive approaches
- Drugs:
 - New azoles: Aspergillus >> Candida ?
 - Candins: Candida > Aspergillus ?; empirical?
- Combo: only for use in clinical studies