Emerging Resistance in Streptococcus pneumoniae

## Antimicrobial Resistance Mechanisms

- β-Lactams
- Macrolides
- Quinolones









#### The Emergence of Penicillin Non-Susceptible Pneumococci in the US



# Assessing resistance and mortality

- For β-lactams, resistance is gradual isolates that are "non-susceptible" likely still respond to therapy, but highly resistant less likely
- supported by PK/PD data that would argue for a penicillin resistant breakpoint of  $\geq 4 \ \mu g/ml$  rather then  $\geq 2 \ \mu g/ml$

### The Emergence of Penicillin Non-Susceptible Pneumococci in the US



### The Alexander Project 1999: *S. pneumoniae*, Pen-I and Pen-R



Logistic regression analysis of penicillin resistance and mortality, invasive pneumococcal pneumonia

| Risk of death | Risk of death after 4 <sup>th</sup><br>hospital day |
|---------------|-----------------------------------------------------|
| 2.3           | 7.1*                                                |
| 1.3           | 0.65                                                |
| 1.4           | 1.0                                                 |
| Ref           | Ref                                                 |
|               | Risk of death<br>2.3<br>1.3<br>1.4<br>Ref           |

Feikin et al., Am J Public Health 2000

Impact of penicillin susceptibility on medical outcomes for adult patients with bacteremic pneumococcal pneumonia

Metlay et al., Clin Infect Dis 2000

- retrospective population based study in Atlanta
- 192 patients infected with pneumococci, 44 (23%) infected with PNSP
- Compared to PSP

In-hospital medical outcomes for patients with pneumococcal pneumonia, adjusted for severity of illness Metlay et al., Clin Infect Dis 2000

**Relative risk** Outcome (Pen NS vs. Pen S) 1.7 (0.8,3.4) Death **Respiratory failure** 1.5(0.7, 3, 1)Admission to ICU 1(0.3, 2.9)

Suppurative complications

<del>4.8 (1.2, 18.8)</del>

Proposed NCCLS ceftriaxone/cefotaxime/cefepime susceptibility breakpoint changes Proposed NCCLS ceftriaxone/cefotaxime/cefepime susceptibility breakpoint changes



# Penicillin-resistant S. pneumoniae tend to be resistant to other $\beta$ -lactams



Goldstein et al. J Antimicrob Chemother 1996;38(Suppl. A):71–84



## Macrolide Resistance

### Ribosome

- Ribosomal RNA
- Ribosomal protein



## Mechanism of Action of MLS Antibiotics

• inhibit protein synthesis by their action on the 23 rRNA of the 50S ribosomal subunit

## Mechanisms of Resistance

- Target modification
- Efflux

Target modification: methylation

- methylation of A2058 of ribosome
- ermB
- produces the MLS<sub>B</sub> phenotype
  - macrolide and clindamycin resistance



## Efflux in S. pneumoniae

- mefA
- results in the active efflux of 14- and 15membered macrolides
- produces the M phenotype
  - erythromycin, clarithromycin, and azithromycin resistance
  - clindamycin susceptibility

# Correlation between erythromycin MICs and resistance mechanisms



Nagai ICAAC 2000, abstr # 892

Prevalence and mechanisms of macrolide resistance in *S. pneumoniae* 

|          | Prevalence of | Mechanism of resistance |             |
|----------|---------------|-------------------------|-------------|
| Country  | resistance    | Efflux                  | Target site |
| US       | 19%,          | 70%                     | 30%         |
| Italy    | 33%,          | 6%                      | 94%         |
| Far East | 80%           | 50%                     | 50%         |

### The Alexander Project 1999: *S. pneumoniae*, Macrolide Resistance



Resistance defined as erythromycin MIC ≥1mg/L

Why haven't we seen treatment failures in macrolide resistant pneumococci treated with macrolides?

- usually mortality is used as outcome measure
- patients treated with macrolide alone as outpatient, mortality <1%</li>
- sicker patients admitted to hospital treated with combination of cephalosporin and macrolide

Macrolide treatment failures with macrolide resistant *S. pneumoniae* 

- 12 patients (7 adults, 5 children) on oral macrolides were hospitalized with bacteremic pneumococcal infections (9 in Spain, 3 in US)
- 11 patients had pneumonia, 1 patient had bacteremia only
- Macrolides being used were: erythromycin (3), azithromycin (4), clarithromycin (3), and josamycin (2)
- 11 of the isolates had *ermB* and 1 *mefE* gene

Garau et al., ICMASK 2000, abstract 7.09

Fluoroquinolones

Topoisomerases: critical enzymes in DNA replication

• topoisomerase IV ( parC, parE )

• DNA gyrase (gyrA, gyrB)

## How do fluoroquinolones work

- DNA first binds to topoisomerases
- Fluoroquinolone traps the topoisomerases/DNA complex
- Cell dies

Cabral et al., Nature, 1997

## Targets for the fluoroquinolones

- Two targets: GyrA and ParC
- Fluoroquinolones preferentially binds to one of the targets over the other:

## **Development of Resistance**

• De novo

up regulation of intrinsic PmrA efflux pump
# Mechanisms of Resistance to Fluoroquinolones

Cell wall

DNA

 Efflux pump is a less potent and less common cause of resistance

> Mutation of bacterial genes for binding sites causes resistance

Efflux pump —

Zhanel G. Can J Infect Dis 1999;10:207

### **Development of Resistance**

- De novo
  - up regulation of intrinsic PmrA efflux pump
  - spontaneous mutations in primary target which lowers the affinity of the fluoroquinolone and increases the MIC: *parC* or *gyrA*

# Mechanism of Action of Fluoroquinolones

#### Topoisomerase IV-

Fluoroquinolone

Fluoroquinolones bind to two nuclear enzymes, inhibiting DNA replication

DNA gyrase

Zhanel G. Can J Infect Dis 1999;10:207

### Spontaneous mutation

The frequency of a spontaneous mutation to fluoroquinolone resistance in *S. pneumoniae* is 1/10<sup>7</sup> to 10<sup>8</sup>

# Burden of pneumococci during infection

### Acute exacerbation of chronic bronchitis

- 10<sup>5</sup> CFU during remission
- $-10^8$  during exacerbation

(Hill)

### Pneumonia

 $-10^{12}$  to  $10^{14}$  CFU

(Frisch AW, J Exp Med 1942)

### Issues

- Fluoroquinolones are becoming de facto first line antibiotics for treatment of CAP
   – 1 billion \$US/year
- CAP guidelines
  - IDSA
  - Canadian
  - ATS

### Issues

- Sub-optimal therapy may increase prevalence of resistance and/or lead to clinical failures
  - Marginally effective compounds (PK/PD)
  - Fluoroquinolone active but either not being absorbed or patient non-compliant

### Clinical Fluoroquinolone and Oral Cephalosporin Failures

Weiss et al, Clin Infec Dis, In Press

- Within a 2-month period in 1995, 9 patients were infected/colonized with a PRSP on same pulmonary ward
  - MIC to cipro of 4 μg/ml
  - all strains were 23F and same PFGE
  - all mutations in same *parC* site

### Clinical Fluoroquinolone and Oral Cephalosporin Failures

• Subsequently, there was an additional 7 isolates during 1996 and 1997 on same ward

### – MIC to cipro 16 µg/ml

- each isolate 23F and identical by PFGE
- all with same mutations in *parC* and now mutation in *gyrA*

### Clinical Fluoroquinolone and Oral Cephalosporin Failures

- Of the 16 patients,
  - 13 met criteria for AECB
  - 3 met criteria for pneumonia
- AECB
  - Cefuroxime given to 6, 5 of which failed
  - Ciprofloxacin given to 5, all failed
- HAP
  - 3/3 died

# Fluoroquinolone resistance rates in pneumococci

- Spain (Linares et al. NEJM Nov 99)
  3% in 1997
- Hong Kong (Ho et al. AAC March 99)
   12% in 1998
- N. Ireland (Goldsmith et al. JAC March 98)
   15% in isolates isolated between 1994 and 1998

Decreased susceptibility of S. pneumoniae to fluoroquinolones in Canada

Chen et al., 1999 NEJM

### Fluoroquinolone use and PRSF Canada, 1988-1998



### CBSN *S. pneumoniae* MICs for ciprofloxacin, 1993-8



Analysis of ciprofloxacin activity against *S. pneumoniae* after 10 years use in US

Sahm et al., AAC, 2000

- 5,640 isolates collected from 377 geographically distributed US hospitals
- collected over 1997-98 respiratory season
- 0.3% of isolates had cipro MICs of  $\geq 4 \mu g/ml$
- resistance strains significantly associated with:
  - >64 years of age
  - respiratory source
  - penicillin resistance

# Levofloxacin resistance in pneumococci

|               | No. of isolates | Percent<br>resistant |
|---------------|-----------------|----------------------|
| United States | 172             | 2.9%                 |
| Canada        | 350             | 1.43%                |

**PROTEKT 2000** 

Implications

#### Quinolone Activity Against Ciprofloxacin-Resistant S. pneumoniae\* MIC ( $\mu$ g/mL) 0.06 0.12 0.25 < 0.03 0.5 8 16 32 2 4 64 32 Ciprofloxacin 100 Isolates Inhibited (Cumulative %) 50 ſ 2 < 0.03 0.06 0.12 0.25 0.5 4 8 16 32 64 MIC (µg/mL)

\*Resistance to ciprofloxacin defined as  $\geq 4 \mu g/mL$ . Adapted from Chen et al. *N Engl J Med*. 1999.

Yellow arrow = MIC<sub>90</sub> in wild type strains White Bar = MIC<sub>90</sub> in cipro resistant strains

### Quinolone Activity Against Ciprofloxacin-Resistant S. pneumoniae\*



\*Resistance to ciprofloxacin defined as  $\ge 4 \ \mu g/mL$ . Adapted from Chen et al. *N Engl J Med*. 1999.



\*Resistance to ciprofloxacin defined as  $\geq$ 4 µg/mL. Adapted from Chen et al. *N Engl J Med*. 1999.

### Quinolone Activity Against Ciprofloxacin-Resistant S. pneumoniae\*



\*Resistance to ciprofloxacin defined as  $\ge 4 \ \mu g/mL$ . Adapted from Chen et al. *N Engl J Med*. 1999.

### Quinolone Activity Against Ciprofloxacin-Resistant S. pneumoniae\*



\*Resistance to ciprofloxacin defined as  $\ge 4 \ \mu g/mL$ . Adapted from Chen et al. *N Engl J Med*. 1999.



• Increasing prevalence of first-step mutants

# The amount of quinolone needed (MIC) to saturate primary target



### Issues

- Increasing prevalence of first-step mutants
- Laboratory testing
  - Routine testing of all pneumococcal isolates
  - Detecting first step mutants

Correlations among levofloxacin MICs, zone diameters, and resistance mechanisms (101 isolates tested)



Richardson, JCM, 2001

Zone diameter

## What does it mean clinically?

Failure of treatment of pneumococcal pneumonia with levofloxacin

## Case 1

- 64 yo M
  - presented with history and clinical findings of CAP
  - no prior hx of fluoroquinolone use
  - treated with levofloxacin 500 mg po 10 days
  - sputum grew S. pneumoniae
- One week after completing therapy
  - diagnosed with recurrent pneumonia
  - sputum grew S. pneumoniae







### Case 2

- 37 yo F with x-ray proven CAP
  - no prior fluoroquinolone therapy
  - treated with levofloxacin 500 mg po 10 days
  - Sp isolate susceptible to levofloxacin by DD
- 3 days into her therapy
  - admitted to hospital because clinically no improvement
  - responded after switched to ceftriaxone and erythromycin

### Case 2





- 66 year old female
- COPD
- Penicillin allergy (rash)

# **Case History**

- June 7: ciprofloxacin 500 mg po BID for flu
- June 13: fever, chills, R pleuritic chest pain
- June 15: seen in ER (on cipro)
   CXR: RLL infiltrate +/- effusion
- Admitted to hospital
- Started empirically on levofloxacin 500 mg po od

# Course in Hospital

- Day 1
  - blood cultures: S. pneumoniae
- Day 4
  - CT: consolidation of RML, RLL and LLL and loculated effusion.
- Day 5
  - SpO2 saturation 85% on 5L, HR 122, BP 100/60
  - increasing R sided chest pain
  - pleural fluid culture: S. pneumoniae

## Course in Hospital

- Day 6
  - SpO2 deteriorating on FiO2 100%
  - admitted to ICU and intubated
  - started on cefotaxime 2g q 12H
- Day 7
  - refractory shock
  - expired
## Case 3



## Case 4

- Patient with AECB treated with ciprofloxacin
- Developed pneumonia and switched to levofloxacin
- Failed therapy-levo-resistant isolate of pneumococci