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A B S T R A C T

Quinolones are one of the largest classes of antimicrobial agents used worldwide. This review considers
the quinolones that are available currently and used widely in Europe (norfoxacin, ciprofloxacin,
ofloxacin, levofloxacin and moxifloxacin) within their historical perspective, while trying to position
them in the context of recent and possible future advances based on an understanding of: (1) their
chemical structures and how these impact on activity and toxicity; (2) resistance mechanisms (mutations
in target genes, efflux pumps); (3) their pharmacodynamic properties (AUC ⁄MIC and Cmax ⁄MIC ratios;
mutant prevention concentration and mutant selection window); and (4) epidemiological considerations
(risk of emergence of resistance, clonal spread). Their main indications are examined in relation to their
advantages and drawbacks. Overall, it is concluded that these important agents should be used in an
educated fashion, based on a careful balance between their ease of use and efficacy vs. the risk of
emerging resistance and toxicity. However, there is now substantial evidence to support use of the most
potent drug at the appropriate dose whenever this is required.
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I N T R O D U C T I O N

With more than 800 million patients treated,
quinolones are currently one of the main classes
of agent in the antimicrobial armamentarium,
with therapeutic indications having evolved from
urinary tract infections in the early 1970s to
infections of almost all body compartments at
the present time. This achievement has been made
possible by a clear understanding of the struc-
ture–activity relationships for this class of mole-
cules [1,2]. This knowledge has led to an intense
effort to synthesise new derivatives with a
broader spectrum, higher intrinsic activity, and
an improved pharmacokinetic (PK) profile (all
attributes that were meant to yield better clinical
outcomes), and the ensuing publication of a very
large amount of chemical, microbiological and
clinical data. It has been estimated that more than
10 000 new molecules have been synthesised in

this class; a PubMed search reveals c. 2000
primary papers and 600 reviews on the topic of
quinolones for the period 1985–2005. However,
these efforts were compromised by the emergence
of resistance [3–7] and, for some of these mole-
cules, unacceptable side-effects [8]. Many authors
[9–15] have examined quinolones in terms of their
development, susceptibility of clinical isolates,
clinical efficacy in specific indications, positioning
in guidelines, or the profile of specific molecules.
While these drugs originally appeared almost as a
panacea, and promised a bright future [16,17],
the scientific community now tends to call for
cautious, or even restricted, use of these agents
[18–21] for ecological reasons, to avoid the dis-
semination of resistance, and to control antibiotic
overuse and misuse (see [22,23] for two practical
approaches in Europe). Together with considera-
tions based on local costs and the availability of
generic agents, this has resulted in large varia-
tions in quinolone sales among countries, especi-
ally in Europe [24].

This review presents an historical perspective
of the quinolones, and attempts to reposition
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them in the context of recent and possible future
advances based on an understanding of resistance
mechanisms, pharmacodynamic (PD) concepts,
and a critical appraisal of the advantages and
drawbacks of these compounds when used for
their main therapeutic indications.

O R I G I N A N D S T R U C T U R E – A C T I V I T Y
R E L A T I O N S H I P S

Discovered in 1962 as a by-product of anti-
malarial research [25], nalidixic acid is the parent
compound of the quinolone class of antibiotics.
The use of nalidixic acid was originally limited
because of its narrow spectrum, low serum levels,
and toxicity issues, but it regained attention in the
1980s for the treatment of diarrhoea and urinary
tract infections following the development of
resistance in Shigella and Escherichia coli to other
classes of antibiotics used at that time. This
marked the beginning of an active campaign of
chemical synthesis to refine structure–activity
relationships, with the aim of improving activity
while optimising pharmacokinetics and reducing
toxicity and drug interactions (Fig. 1; see [1,2,26]
for reviews on structure–activity and structure–
toxicity relationships). Accordingly, many quino-
lone molecules have been patented (key examples
are shown in Fig. 2), but only a few have been
commercialised and reached the clinic; indeed,
the attrition rate of > 999 ⁄ 1000 molecules created
illustrates clearly the unpredictable and risky
nature of pharmaceutical research.

Quinolones available for clinical use have been
classified into four generations,mainly on the basis
of their spectrum of activity [27]. Following the
lead of flumequine, the second generation of
quinolones had the major feature of a fluorine
substituent (F) at position 6 (hence the name of
fluoroquinolones often given to the whole class),
which increased activity markedly. These early
compounds were most potent against Gram-nega-
tive organisms; thus their activity against Strepto-
coccus pneumoniae was too marginal to warrant
clear indications for use in the treatment of respir-
atory tract infections, and the emergence of resist-
ance soon reduced their potential against
Staphylococcus aureus. Of these compounds,
ciprofloxacin and ofloxacin are the most widely
used today, with ciprofloxacin still being the most
active against Pseudomonas aeruginosa. Ofloxacin is
a chiral molecule with only the S-(–) isomer as an

active component. The latter has been commer-
cialised as levofloxacin, which is, by its nature,
twice as active as ofloxacin per unit of mass, but
with no intrinsic change in its spectrum. The other
members of the second generation, sparfloxacin
and grepafloxacin, must be considered separately,
since their substituent at position 5 and the bulki-
ness of their substituent at position 7 improved
their activity significantly against Strep. pneumo-
niae. However, both of these agents were soon
withdrawn or restricted for toxicological reasons.

Further improvement in activity against
Gram-positive bacteria, together with significant
anti-anaerobe activity, was seen with the third-
generation molecules, caused by the presence of
an alkyl-substituted piperazine or pyrrolidine at
position 7, and of a methoxy at position 8. In this
class, trovafloxacin (a naphthyridone), although
not an 8-methoxyquinolone, was one of the most
active compounds, and had the broadest spec-
trum when registered, but was soon restricted to
the treatment of severe infections in the USA, and
was withdrawn in Europe, because of rare cases of
hepatotoxicity. The most recent available member
of this group is gemifloxacin (also a naphthyri-
done), which possesses a very large spectrum of
activity, including some anaerobes, but gemi-
floxacin is currently approved only in Korea, New
Zealand, the USA and Canada.

These extensive research efforts have enabled a
better definition of the structural moieties or
elements around the basic pharmacophore that
offer the best combination of clinical efficacy,
reduced resistance selection, and safety. These
elements include a cyclopropyl at position 1, a
methoxy at position 8, a (substituted) pyrrolidine
or substituted piperazine at position 7, and a fluor
substituent at position 6. Optimising all other
substituents has permitted the removal of the
fluorine atom at position 6 (which has been
claimed to be involved in genotoxicity and central
nervous system defects [2] possibly involved in
genotoxicity), giving rise to the fourth generation
of quinolones, termed des-fluoroquinolones, with
garenoxacin as its first representative. The future
of this molecule is, however, uncertain.

M E C H A N I S M O F A C T I O N A N D
S P E C T R U M O F A C T I V I T Y

Fig. 3 shows the cumulative distribution of
susceptibilities of the five fluoroquinolones with

Van Bambeke et al. Quinolones in 2005: an update 257

� 2005 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 11, 256–280



NX

COOH

OR5

R5

R6

R6

R7

R7

R1

R1

R8

R8generation drug
[orig. ref./patent]]

X

1 nalidixic acid 
[283;284]

N -CH2-CH3

-CH2-CH3

-CH2-CH3

-CH2-CH3

H H -CH3

2a norfloxacin
[285-287

C H H F HN

HN

N

pefloxacin
[288;289]

C H H F N NH3C

H3C

N NH3C

NH3C

lomefloxacin
[290;291]

C F H F

ciprofloxacin
[292-294]

C H H F N

ofloxacin
[295;296]

H F N

NH3C Nlevofloxacin
[297;298]

C

O

N

CH3

H F

2b

sparfloxacin
[299;300]

C F -NH2 F

grepafloxacin
[301;302]

C H -CH3 F

3a

gatifloxacin
[303;304]

C -O-CH3

-O-CH3

H F

trovafloxacin
[305;306]

N

F

F

H F
N

H2N

H2N

moxifloxacin
[307;308]

C H F
NN

3b

gemifloxacin
[309;310]

N H F
N

NH3CO

4

garenoxacin
[311;312]

C -O-CHF2 H H
HN

H3C

NH3C

H3C

H3C

N

NH3C

H3C

N

NH3C

H3C

N

H

C

O

N

CH3

Fig. 1. Pharmacophore and structures of the main quinolones that have been approved for human use. Names in bold
refer to compounds in large-scale clinical use in Europe. Names in italic refer to compounds for which commercialisation
has been suspended or severely reduced because of side-effects and ⁄ or a decision of their registration holders (the
development of garenoxacin in Europe and North America is at present uncertain).
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Fig. 2. Structure–property relation-
ships in quinolones. The central part
of the molecule refers to the phar-
macophore shown in Fig. 1.
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the current largest clinical usage in Europe with
respect to wild-type populations of four major
pathogens, i.e., in the absence of acquired resist-
ance. These data support the structure–activity
relationships discussed above, and confirm that
ciprofloxacin is the most active agent against
Gram-negative organisms, that moxifloxacin is
preferentially active against Gram-positive organ-
isms, that ofloxacin and levofloxacin show inter-
mediate activity (with the two-fold difference in
intrinsic activity for levofloxacin mentioned
above), and that norfloxacin is an intrinsically
weak fluoroquinolone against Gram-positive
organisms.

As described previously [28–31], the activity of
quinolones stems primarily from the formation

of ternary complexes between DNA and type II
topoisomerases, namely DNA gyrase and topo-
isomerase IV, two enzymes that play a critical
role in the supercoiling of DNA [32–34]. The
rapid bactericidal effect of fluoroquinolones is
thought to result from the release of DNA ends,
which are thought to induce bacterial apoptosis
[35].

Both topoisomerase enzymes are essential for
bacterial growth, but they cannot complement
one another. Several studies have highlighted
substantial variations in the in-vitro inhibitory
concentrations for DNA gyrase and topoisom-
erase IV, depending on both the bacterial species
and the molecule being studied (Table 1). These
data, which are roughly consistent with MIC

Fig. 3. Cumulative MIC distribu-
tions for wild-type populations of
four major pathogens (redrawn
from data obtained and made pub-
licly available by the European
Committee on Antimicrobial Sus-
ceptibility Testing (EUCAST); see
http://www.eucast.org). Each ref-
erence distribution is the result of
aggregated MIC data obtained from
publications in international jour-
nals, national breakpoint commit-
tees, reference laboratories,
international antimicrobial surveil-
lance systems, such as EARSS
(http://www.earss.rivm.nl) or those
sponsored by pharmaceutical com-
panies, and antimicrobial suscepti-
bility testing device manufacturers.
As such, the data are meant to
represent the natural variability in
the susceptibility of organisms
without specific, acquired resistance
mechanisms to the corresponding
drugs.

Table 1. Range of inhibitory concentrations of 5-fluoroquinolones for DNA gyrase and topoisomerase IV isolated from
different bacterial species [36,52,236–249]

Drug

IC50 (mg ⁄L)

Streptococcus pneumoniae Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa

DNA gyrase Topo IV DNA gyrase Topo IV DNA gyrase Topo IV DNA gyrase Topo IV

Norfloxacin 582 35 55.5 to > 100 10–12 1.5 7
Ciprofloxacin 80–138 5–7 13.5–25 4–6 < 0.75 2 0.5 4
Ofloxacina 88 10 12–19 10–23 < 0.75 12 1.5 9.5
Moxifloxacin 22 6 3.5 8
Gemifloxacin 5–10 2–5

aValues for levofloxacin (active isomer of ofloxacin) are half of these values.
Topo IV, topoisomerase IV.
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values and data obtained from analysis of
resistant mutants, confirm that DNA gyrase is
the preferred target of fluoroquinolones in
Gram-negative bacteria. The situation is more
complex in Gram-positive bacteria. For example,
the IC50 ratio in Strep. pneumoniae is significantly
different between ciprofloxacin and ofloxacin (or
sparfloxacin) and moxifloxacin (or gemifloxacin).
Taking into account the fact that equivalence in
target preference is denoted by an IC50 ratio of
2–3, and the fact that inhibition of DNA gyrase is
probably more lethal to the cell than inhibition of
topoisomerase IV, this could explain the observa-
tion that gyrase becomes the preferred target in
clinical isolates with resistance mutations.

Although the structural features responsible for
the interaction of fluoroquinolones with the bind-
ing sites on DNA gyrase or topoisomerase IV are
not yet unravelled fully, the design of derivatives
that target both enzymes selectively has been
proposed [36–39]. A useful development in that
direction has been the introduction of a methoxy
group (such as in moxifloxacin and gatifloxacin
[40], where this group actually replaced a chlorine
that had similar properties with respect to activity,
but caused phototoxicity).

R E S I S T A N C E

Bacterial resistance to quinolones can essentially
develop through two main mechanisms, namely a
decrease in the intrabacterial concentration of a
drug, or alterations in a drug’s target enzymes.
While the former mechanism permits immediate
survival and is largely inducible, the second is
stable and is disseminated more easily. It will
therefore be discussed first.

Target site alteration results from mutations in
the chromosomal genes encoding the DNA gyrase
and topoisomerase IV. These genes are commonly
called gyrA and gyrB, and parC and parE, respect-
ively (grlA and grlB in Staph. aureus). Such
mutations probably result from transcription
errors during chromosome replication, and occur
at rates as high as 1 in 106 to 1 in 109 in wild-type
bacteria [41]. In Strep. pneumoniae, another mech-
anism that might also lead to fluoroquinolone
resistance mutations is horizontal gene transfer
[42,43] from viridans group streptoccoci. Muta-
tions tend to cluster in a region called the
‘quinolone resistance-determining region’ which,
in the resulting GyrA protein, corresponds to the

domain that is bound to DNA during enzyme
activity [44]. These mutations result in reduced
drug affinity [45,46].

Phenotypic resistance arises in a stepwise
fashion as a result of accumulating mutations.
First-step mutations occur commonly in the pri-
mary or preferred drug target enzyme (thus more
often in gyrA for Gram-negative, and more often
in parC for Gram-positive organisms; mutations in
parE mutations are uncommon). However, in
Strep. pneumoniae, first-step mutants selected with
ciprofloxacin tend to be parC mutants, whereas
those selected with moxifloxacin (or gatifloxacin
and sparfloxacin) tend to be gyrA mutants,
reflecting a different preferred target of these
fluoroquinolones for this species [35,47–49].
Mutation of gyrA has been described for Chlamy-
dia pneumoniae following serial cultures with
increasing moxifloxacin concentrations [50].
Second-step resistance mutations may then accu-
mulate in the secondary drug target enzymes and
will further affect quinolone resistance [51].

The precise effect of mutations in the gyrase
and topoisomerase IV genes on the resistance
phenotype may differ between bacterial species
[52], but depends also on the precise gene
involved and which specific quinolone is used.
While some mutations in the primary target
might be sufficient for acquisition of detectable
resistance, this is not always the case. Thus, first-
step parC mutations in Staph. aureus are associated
with low-level resistance, and highly resistant
clinical isolates usually possess several mutations
[53–55]. In studies involving well-defined single-
step mutants, each mutation in the quinolone
resistance-determining region of gyrase or topo-
isomerase genes usually decreased susceptibility
4–8-fold [56–58]. Although second-step mutations
in the secondary targets tend, in general, to have
less impact on the resistance phenotype, they
increase the resistance level further, but the effect
of each mutation on the resistance level to
different quinolones may vary. Thus, a pattern
of cross-resistance between different molecules
may develop, whereby parallel, simultaneous
increases in MICs are observed. Conversely,
dissociated resistance may occur in which there
is no significant change in MIC values for some
molecules, but significant increases for others
[41,51,59] (Fig. 4). These observations are obvi-
ously important in that they may favour the use of
compounds that display this type of dissociated
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resistance, select mutants with less impact on MIC
values, or display lower frequencies of selection
of resistance mutations. In this respect, a methoxy
in position 8 could also be important, since it has
been shown to reduce the probability of selection
of resistant mutants [60–62].

The second main mechanism leading to
quinolone resistance is associated with a de-
crease in their intrabacterial concentrations.
Changes in the outer-membrane, including
altered outer-membrane porins (OmpF) leading
to reduced entry of antibiotics, have been
reported previously with Gram-negative bacteria
[63,64]. The resulting changes in quinolone
susceptibility were often accompanied by
reduced susceptibility to other classes of antibi-
otics (mainly carbapenems). Resistance in such
mutants is usually of a relatively low level, as
entry is not prevented completely; so clinically
significant resistance often occurs in combina-
tion with other resistance mechanisms. How-
ever, because the mutations identified in these
strains cause pleiotropic alterations, the possi-
bility that resistance in these mutants is actually
caused by increased efflux, which was only
recognised in the mid-1980s [65], cannot be
excluded. An increasingly large number of

reports have now implicated efflux as a major
mechanism of antibiotic resistance [66]. Efflux
pumps appear to be ubiquitous, and are prob-
ably essential in the general physiology of
bacteria [67]. They can be encoded either by
chromosomal genes or by genes associated with
mobile elements. When expressed constitutively,
these genes are probably responsible for many
cases of so-called ‘intrinsic resistance’, and
bacteria lacking efflux pumps have even been
proposed as ideal organisms to screen for new
antibiotics because of their hypersensitivity to a
large number of antimicrobial agents [68]. When
induced or activated, they usually cause low-to-
moderate levels of phenotypic resistance to
fluoroquinolones [46], which can become clinic-
ally relevant when combined with mutations in
the target enzymes. In some cases, however,
efflux-pump systems can themselves be respon-
sible for clinically relevant resistance [69–72].
Perhaps more importantly, efflux favours the
emergence of resistant mutants because it
enables bacteria to survive in the presence of
sub-optimal concentrations of antibiotics [73].
Increasing the bulkiness of the substituent at
position 7 contributes to a reduction in the
transport of quinolones by efflux proteins of
bacteria [74], which explains the low efflux rate
of moxifloxacin and garenoxacin in Strep.
pneumoniae [74–77]. Efflux-mediated resist-
ance has now been described in pneumococci
(PmrA) [78,79], staphylococci (NorA) [80,81],
anaerobes [82] and Gram-negative bacteria
[73,83,84]. In the last of these groups, efflux
systems usually have broad substrate specificity,
recognising several classes of chemically unre-
lated molecules and yielding a multiresistance
phenotype.

Finally, plasmid-mediated resistance to quino-
lones has been reported in Klebsiella pneumoniae
and in E. coli [85,86]. The plasmid encodes a qnr
gene product (218 amino-acids) that lowers
gyrase binding to DNA [87,88], but bacteria
carrying the plasmid still need additional defici-
encies in outer-membrane proteins to display
clinically meaningful resistance [87,89]. So far,
the prevalence of the qnr gene is rare, although
reports from China suggest that a high local
prevalence is possible [86]. The qnr gene has been
observed recently in a single isolate of E. coli from
Europe, carried on a conjugative plasmid confer-
ring resistance to quinolones, most b-lactams

Fig. 4. Cross-resistance and dissociated resistance in
quinolones. QA and QB illustrate a situation of cross-
resistance: although the initial susceptibility of the strain
may be different for molecules A and B, mutations in the
target enzymes lead to similar changes in the susceptibility
to both drugs. QC illustrates a situation of dissociated
resistance: the susceptibility to molecule C does not change
in spite of the acquisition of a first mutation, and will
increase only upon acquisition of a second mutation.
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except carbapenems, most aminoglycosides, sul-
phonamides, rifampicin, trimethoprim and chlo-
ramphenicol [90].

P H A R M A C O K I N E T I C S A N D
P H A R M A C O D Y N A M I C S

Most quinolones show excellent bioavailability,
which makes them ideal for ambulatory patients
and for intravenous-to-oral antibiotic switches in
hospitalised patients [91]. They are also charac-
terised by excellent penetration into most tissues
and body fluids (consistent with a distribution
volume of c. 1–4 L ⁄kg), but their serum levels are
usually low, especially when fractionated dosing
schedules are used. Although barely greater than
the breakpoints of 2 mg ⁄L proposed originally
[92], these levels were nevertheless considered to
be sufficient at the time of registration of the
second-generation quinolones. Early studies
showed that quinolones, like aminoglycosides
but in contrast to b-lactams, work mainly in a
concentration-dependent manner [93] and exert a
marked post-antibiotic effect [94], although this is
not consistent across all species. Studies in neu-
tropenic animals reinforced this conclusion by
demonstrating that unfractionated schedules pro-
duced a better survival rate [95], provided that a
Cmax ⁄MIC ratio of > 10 could be reached (see [96]
for a definition of the various PK and PD
parameters of antimicrobial agents and their
meaning). At lower values, the AUC24 h ⁄MIC
ratio became more predictive, perhaps because
of the decreased rate of bacterial killing.

At about the same time, clinicians noticed
unacceptable rates of failure and emergence of
resistance to ciprofloxacin when treating infec-
tions caused by organisms with an MIC close to
the breakpoints with the commonly used low
dosages (2 · 200 mg) [97–99]. This led to the first,
large-scale clinical study aimed at defining the PD
parameters which were predictors of efficacy
[100]. Univariate analysis showed that the
AUC24 h ⁄MIC ratio (> 125) linked best with both
the clinical and microbiological outcomes, and
that a Cmax ⁄MIC ratio of < 4 was associated
significantly with a sub-optimal outcome. How-
ever, the use of twice- and three-times-daily
dosing schedules did not allow analysis of the
benefits of high peak concentrations, since these
were infrequent. A subsequent clinical study of
levofloxacin with community-acquired pneumo-

nia [101] stressed the importance of the Cmax ⁄MIC
ratio (if > 12.2). However, in this study, as in that
of Forrest et al. [100] and most other clinical
studies, the lack of variability in dosing schedules
made Cmax and AUC covariates, so that their
relative roles could not be distinguished. Taking
into account this limitation, and realising that
high Cmax ⁄MIC ratios are difficult to obtain with
second-generation quinolones and organisms
with elevated MICs, most investigators and drug
companies have now adopted the AUC24 h ⁄MIC
ratio (using preferably free levels) as a practical
predictive parameter for efficacy. Indeed, in
limited trials this parameter appeared to be linked
strongly to clinical outcome and, in experimental
studies, was largely independent of the dosing
interval, the fluoroquinolone used, the animal
species and the site of infection [102–104]. The
question remaining unanswered is the minimal
value of this parameter, with a value of 25
appearing sufficient for less severe infections
and ⁄ or immunocompetent hosts, but with a value
of ‡ 100 appearing necessary for severe infections
and ⁄ or immunocompromised hosts [105].

Perhaps the true picture comes from a close
examination of both the experimental studies and
the clinical data. The former show that required
levels of drug exposure depend critically upon
the desired effect [106]. For instance, moving from
an EC50 to an EC99 effect with in-vitro dynamic
models requires an increase of about ten-fold in
AUC ⁄MIC ratios [107]. In animals, this ratio must
be increased up to five-fold to move from a static
effect and a 2 · log10 kill in immunocompetent
animals, and up to about three-fold for a static
effect between neutropenic and non-neutropenic
animals [108]. The clinical data actually point to
the same conclusion by showing that an
AUC24 h ⁄MIC ratio of 125 will yield efficacy by
day 7, but that higher values (> 250) will produce
faster bacterial eradication [109]. Therefore, time-
related events must also be taken into considera-
tion. The available data can therefore be inter-
preted as meaning that aiming at minimal values
may be quite dangerous, given the possibility of
large variability in individual PK parameters
[110], the often imprecise character of the MIC
determinations [111], and the uncertain immuno-
logical status of many patients. Table 2 proposes
conservative AUC24 h ⁄MIC-based limits of sensi-
tivities (free drug concentrations have been used,
since bound fluoroquinolones do not participate
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directly in activity [112,113]). However, the
Cmax ⁄MIC ratio may be critical in preventing the
emergence of resistance (see below), and quino-
lones with a higher Cmax are probably desirable in
this context.

I M P L I C A T I O N S O F P K ⁄ P D F O R T H E
P R E V E N T I O N O F R E S I S T A N C E

The recognition of the relatively fast emergence of
resistance to quinolones has only recently trig-
gered PK ⁄PD research aimed at reducing this
risk. Yet in-vitro studies and animal models, and,
to some extent, clinical investigations concur in
indicating that low AUC24 h ⁄MIC ratios, even if
clinically effective, will be conducive to the
selection of resistant mutants [114–119]. A more
fundamental approach has probably been taken
by developing a novel in-vitro measure of
quinolone potency called the ‘mutant prevention
concentration’ (MPC). Described originally for
Mycobacterium bovis [60], the MPC is the

concentration that prevents the growth of the
next-step mutant of a bacterial strain. It essentially
defines the concentration threshold that would
require a bacterium to simultaneously acquire
two resistance mutations for growth in the pres-
ence of that specific drug. Determination is made
by plating at least 1010 bacteria in the presence of
increasing concentrations of a quinolone, and
determining the concentration at which no
growth occurs [120]. A concentration of
1010 CFU was chosen to detect mutations occur-
ring at frequencies of 10-7)10-9, as well as to
mimic the typical bacterial load and population
heterogeneity at the site of infection. This method
has now been applied to several bacterial species
and different quinolones [121–128]. The MPC
provides a numerical threshold that might be
used to severely restrict, if not prevent, the
selection of resistance during therapy [129], and
can thereby suggest minimum serum concentra-
tions to be attained [130]. Third-generation
fluoroquinolones (gatifloxacin, gemifloxacin,

Table 2. Pharmacokinetic parameters used for proposing PK ⁄PD based limits of sensitivity and conditions favouring the
prevention of emergence of resistance for most common organisms and systemic infections, together with the breakpoints
set by European and American ad-hoc organisations

Drug

Typical daily

dosagea

Typical PK values Proposed PK ⁄PD upper limit Breakpoints (mg ⁄L)d

Cmax in mg ⁄L
total ⁄ free

(dose)

AUC24 h

(mg · h ⁄L)

total ⁄ free Efficacyb
Prevention of

resistancec
EUCAST

(S-R)

NCCLS

(S-I-R)

Norfloxacin 800 mg 1.4 ⁄ 1.1
(400 mg PO)

14 ⁄ 11 0.1–0.4 0.1 £ 0.5 to > 1e £ 4–8 > 16j

Ciprofloxacin 1000 mg 2.5 ⁄ 1.75
(500 mg PO)

24 ⁄ 18 0.2–0.8 0.2 £ 0.5 to > 1f

(£ 0.125 to > 2)g)
£ 2–2 > 4k

Ofloxacin 400 mg 4 ⁄ 3
(400 mg PO)

40 ⁄ 30 0.3–0.9 0.4 £ 0.5 to > 1f

(£ 0.125 to > 4)g
£ 2–4 > 8l

Levofloxacin 500 mg 4 ⁄ 2.8
(500 mg PO)

40 ⁄ 28 0.3–0.9 0.3 £ 1 to > 2f

(£ 2 to > 2)h
£ 2–4 > 8l

Moxifloxacin 400 mg 3.1 ⁄ 1.8
(400 mg PO)

35 ⁄ 21 0.2–0.7 0.2 £ 0.5 to > 1)e

(£ 5 to > 0.5)i
£ 1–4 > 4m

EUCAST, European Committee on Antimicrobial Susceptibility Testing (http://www.eucast.org) [241].
NCCLS, National Committee for Clinical Laboratory Standards (Clinical and Laboratory Standards Institute) (http://www.nccls.org).
S, susceptible; I, intermediately resistant; R, resistant.
aIn patients with no gross abnormality of the excretory functions, and for most common tissue-based infections (thus excluding simple cystitis); based on recent typical
‘Summary of Product Characteristics’ (SPC, or ‘labelling’ in Europe). Recent guidelines, and SPC in some countries, suggest higher dosages for ciprofloxacin (up to
1200 mg ⁄day), ofloxacin (up to 800 mg ⁄day), and levofloxacin (750–1000 mg ⁄day). Because the pharmacokinetics of registered quinolones are linear with respect to doses
(within the limits of the agents registered), adaptation of the figures of Cmax and AUC24 h for doses other than those shown here can be done by simple extra- or intrapolation.
bBased on a free AUC24 h ⁄MIC ratio ranging from 30 (pneumococcocal infection ⁄ immunocompetent host) to 100 (Gram-negative infection ⁄ immunoimpaired host); see
discussion in text in support of these values as average means for free concentrations.
cBased on a minimal Cmax ⁄MIC ratio of 10, considered to encompass the ‘mutant prevention concentration’ of most susceptible isolates (see text for discussion). Application of
this criterion will also meet the requirement for larger AUC24 h ⁄MIC ratios than needed for efficacy.
dFor organisms within the main indications.
eEnterobacteriaceae only (Pseudomonas is considered to be non-susceptible).
fFor most Gram-negative organisms, including Pseudomonas; 1 for Staph. aureus with high-dose therapy.
gValues in parentheses refer to Streptococcus pneumoniae, where the wild-type population is not considered susceptible to ciprofloxacin or ofloxacin, and is therefore categorised
globally as ‘intermediate’.
hFor Strep. pneumoniae and levofloxacin, the breakpoint was increased to 2 to avoid dividing the wild-type population (see [242] for a typical example from France), but this
breakpoint relates to high dose therapy.
iFor Strep. pneumoniae, Haemophilus influenzae and Moraxella catarrhalis.
jEnterobacteriaceae and P. aeruginosa.
kStaphylococcus aureus, Enterobacteriaceae and P. aeruginosa.
lStrep. pneumoniae, Staph. aureus, Enterobacteriaceae and P. aeruginosa.
mStrep. pneumoniae.
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moxifloxacin) usually display lower MPC values
for isolates of Strep. pneumoniae than do older
fluoroquinolones, although the situation may be
less favourable with organisms already carrying
one mutation [131–133]. For P. aeruginosa, ciprofl-
oxacin has a lower MPC than levofloxacin [134].
These observations are concurrent with the
observed stepwise 4–8-fold increase in MICs that
results from accumulating mutations in the topo-
isomerase genes, and the observation that the
higher the ratio of Cmax over MIC, the better the
outcome [135]. Studies on the MPC have led to
the development of the concept of the ‘mutant
selection window’, which states that resistant
mutants are best selected at antibiotic concentra-
tions above the MIC (a selection pressure being
necessary), but below the MPC [129]. This concept
has now been demonstrated in vitro for Staph.
aureus [124] and Strep. pneumoniae [116].

Two practical difficulties face the clinician
wishing to use the MPC as a useful target concen-
tration. First, apart from a natural variation in
MPC values between genetically different strains
from the same species, the unknown status of
resistance mutations in the strain makes predic-
tions difficult, as outlined above. Second, little is
known about the time during which the bacteria
must be exposed to concentrations above the MPC
to effectively prevent the selection of resistant
mutants. Experimental studies show that selection
will occur when the quinolone concentration
remains inside the mutant selection window for
> 20% of the dosing interval, whichwill most often
be the case for patients with an AUC24 h ⁄MIC ratio
of 30–60 [116]. Therefore, the available data can be
interpreted as meaning that quinolones should be
chosen, and their dosages and schedules selected,
to reach at least a Cmax ⁄MIC ratio of 10. This will
increase the probability of maintaining the con-
centration above the mutant selection window for
a large proportion of the dosing interval. This
concept has been included in Table 2 (prevention
of resistance).

E P I D E M I O L O G Y O F R E S I S T A N C E
D E V E L O P M E N T

The notoriously fast development of resistance
to second-generation quinolones has quickly
removed the effectiveness of compounds such as
pefloxacin against both Gram-negative and
Gram-positive organisms. The situation has been

more mixed for ciprofloxacin and ofloxacin with
respect to Gram-negative organisms. While both
of these quinolones still remain as first choices in
many therapeutic guidelines, quite alarming lev-
els of resistance in P. aeruginosa are now reported
worldwide and in specific settings [6,7,136–143].
However, large variations in resistance levels
exist that are not explained easily (see [144] for a
typical example in Europe), although the volume
and type of fluoroquinolone used, both in the
hospital and the surrounding community, are
among the determinants [145–147]. The correct
approach probably requires close surveillance of
susceptibilities at the local level, and the formula-
tion of appropriate antibiotic policies that should
restrict unnecessary use, in combination with
appropriate PK ⁄PD-based dosing when needed,
and more systematic MIC measurements. Collect-
ing MIC data appears essential; indeed Table 2
illustrates that resistance breakpoints are set at
values which are not supported by recent PK ⁄PD
data, not to mention optimal efficacy. In apparent
contrast, there are optimistic global reports con-
cerning E. coli [139,148–151], albeit with local
observations that often point to much higher rates
of resistance, perhaps related to the site of
infection and the status of the patient. Here also,
the answer may lie in closer surveillance and
application of PK ⁄PD principles in all cases for
which the outcome might become uncertain.

The picture is quite different for levofloxacin
(and third-generation quinolones) against Strep.
pneumoniae. Resistance has remained low [152]
and increases only slowly [153,154]. In this con-
text, the alarming increase in ciprofloxacin resist-
ance observed between 1988 and 1997 in Canada
[155] should be considered atypical, as it results
from inappropriate use of ciprofloxacin for the
treatment of community-acquired respiratory
tract infections in this country. There is also one
well-known exception in Hong Kong [156], which
retrospective analysis suggests was associated
with the pan-regional dissemination of a specific
fluoroquinolone-resistant variant, Hong Kong
(23F)-1, perhaps triggered by low doses used in
the treated population of patients with chronic
obstructive pulmonary disease [157]. This is of
interest when considering the extensive use
worldwide of older quinolones for indications
other than respiratory tract infections, since,
because of the weak anti-streptococcal activity of
these agents, exposure of commensal streptococci
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to insufficient concentrations for a lengthy period
of time might be anticipated. However, in contrast
to macrolides and penicillin, for which the rates of
resistance and ⁄ or decreased susceptibilities are
much higher, quinolones have not been used in
children, who may constitute a major reservoir for
resistant streptococci, as they are prescribed a
large proportion of the total human antibiotic
consumption. Recent data suggesting decreased
susceptibility of Strep. pneumoniae to levofloxacin
in the USA in relation to its local use [158],
coupled with reports of clinical failures [159] and
recent trends towards decreased susceptibility of
European isolates to ciprofloxacin [160], indicate a
need for close surveillance and the formulation of
global restrictive prescribing policies.

There is also considerable evidence for clonal
spread [161], although polyclonal spread has been
seen in Japan [162]. Since resistance to quinolones
is the result of the accumulation of spontaneous
mutations that can occur rapidly in treated
patients [159], it seems logical that resistant
mutants would belong to many different geno-
types. If this were indeed the principal driving
force for resistance, a gradual increase in resist-
ance rates following the gradual emergence and
selection of resistant mutants in a wide range of
different genotypes would be expected, more or
less concurrent with the total use of quinolones.
However, recent data support an important role
for a small number of highly epidemic bacterial
clones in the spread and overall rate of quinolone
resistance [163]. This has also been observed
for fluoroquinolone-resistant methicillin-resistant
Staph. aureus [164] and gonococci [164].

Finally, target mutations and overexpression of
efflux mechanisms have often been associated
with significant fitness cost, resulting in a reduced
growth rate and ⁄ or virulence in the absence of
antibiotic challenge. However, compensatory
mutations may partly or fully restore the function
impaired by the resistance mutation [165]; indeed,
evidence for an enhanced in-vivo fitness of resist-
ant strains in the absence of antibiotic pressure has
been presented for Campylobacter jejuni [166]. The
biological price that bacteria pay for quinolone
resistance appears therefore to be limited [51],
and, as a consequence, the emergence of resistant
strains could be easy, leading to a rapid increase in
resistance rates that will depend not solely on total
quinolone use, but also on all the other factors that
drive the spread of epidemic clones. For Strep.

pneumoniae in particular, there are fears that use of
quinolones for indications that carry a higher risk
of multiresistant epidemic clones (e.g., infections
in children, and chronic respiratory infections in
elderly patients) could impact significantly on
resistance rates. A first case of failure of oral
levofloxacin treatment for community-acquired
pneumonia caused by Haemophilus influenzae has
been reported, with step-by-step mutations in
DNA gyrase and topoisomerase IV [167]; this type
of mutant can be obtained easily in the laboratory
with ciprofloxacin by stepwise selection [128].
Again, these concerns can be addressed by the
implementation of closer and improved surveil-
lance methods (including not only serotyping and
MIC determination, but also surveillance of spe-
cific mutations and effluxmechanisms), a decrease
in the non-justifiable use of quinolones, and closer
attention to PK ⁄PD considerations when the use of
an antibiotic is deemed essential. This is probably
critical, as current breakpoints fail to identify most
Strep. pneumoniae isolates with only first-step
mutations [168] or with efflux mechanisms.

T I S S U E
A C C U M U L A T I O N ⁄ D I S T R I B U T I O N
A N D I T S M E A N I N G

Much has been reported regarding the presence of
fluoroquinolones in epithelial lining fluid and
pulmonary tissues [19,169] in support of the use
of fluoroquinolones for treating respiratory tract
infections. However, the key question, unan-
swered so far, is whether tissue accumulation is
necessary in such a highly vascularised tissue as
lung,wheremost common pathogens are probably
extracellular. Penetration in other less accessible
tissues, such as bone or prostate, is probably more
important and beneficial [170,171]. Penetration in
cerebrospinal fluid is certainly critical, and
explains the appropriateness of quinolones for
the treatment of meningitis [172]. A key feature of
quinolones is their ability to accumulate in poly-
morphonuclear leukocytes and macrophages,
with cellular concentrations at equilibrium being
5–20-fold higher than extracellular concentrations
[173,174]. Influx probably occurs by simple passive
diffusion, although active transport has also
been suggested [175,176]. However, neither the
mechanism of accumulation nor the subcellular
localisation are known with certainty; the bulk of
cell-associated quinolone is found in the soluble
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fraction of cell homogenates [174,177], but part of
the drug could have access to other organelles
[178].

Quinolones show activity in a large series of
models of cells infected by bacteria sojourning in
different subcellular compartments [179], such as
Listeria monocytogenes (cytosol) [180], Salmonella
spp. (phagosomes) [181], Legionella pneumophila
(endoplasmic reticulum; phagolysosomes) [182],
Chlamydia spp. (inclusions) [183,184], Mycobacteri-
um spp. (endosomes) [185], or opportunistic
intracellular species such as Staph. aureus [186]
or H. influenzae [187]. The efficacy of quinolones
against intracellular pathogens has been con-
firmed in the corresponding animal models of
infection [188–192]. Clinical studies demonstra-
ting their efficacy in human infections, such as in
atypical pneumonia [193–195] or tuberculosis, are
now being published, [196–198]. However,
in-vitro models show that the intracellular activity
of quinolones is markedly lower than would be
anticipated from their level of accumulation [179].

Cell-associated quinolones are also subject to
active efflux, mainly because of the activity of ABC
transporters known to confer multiresistance, such
as P-glycoprotein and ‘multiple resistant protein’.
This active efflux will cause reduced accumulation
of antibiotic in phagocytic cells, and hence a
reduction in intracellular activity [177]. The polar-
ised location of the ABC transporters, organic
cation transporter and the organic anion
transporter [199] at the surface of epithelial cells
bordering the intestine, liver, kidney and blood–
brain barrier means that they can modulate the
resorption, distribution and elimination of quino-
lones [200–202]. In some cases, transporters can
also act in a concerted fashion and cooperate with
the detoxificationmetabolism [203,204]. Efflux also
plays a major role in the protection of the central
nervous system, since an inverse relationship has
been observed between the propensity of fluoro-
quinolones to induce seizures [205] and their rate
of efflux from the central nervous system [206].

T O X I C I T Y A N D D R U G
I N T E R A C T I O N S

Quinolone use is limited by a series of unwanted
or adverse effects, most of which are mild but
frequent, whereas others are rare but severe, and
have caused the withdrawal of several class
members (Table 3). Among these unwanted

effects, some are class-related, meaning that they
are not associated with any particular structural
feature other than the general pharmacophore of
the quinolones (Fig. 1). These effects are reported
for all the molecules in the class, albeit with
differences in incidence (e.g., gastrointestinal
discomfort or arthralgia). Similarly, the ability of
quinolones to form complexes with divalent and
trivalent metal ions is linked intrinsically to the
presence of the carboxylate function, and is
therefore unavoidable. Oral bioavailability of
quinolones can be retained by separating and
delaying the administration of medications con-
taining divalent and trivalent metal ions. Most of
the other unwanted effects of quinolones are
dependent on their substituents (Fig. 2), and are
therefore specific to particular agents (Table 3).

The safety profile of quinolones is being up-
dated constantly, since some of the adverse
effects, such as cardiotoxicity, have recently
attracted additional attention (see [207] for a
review of current knowledge and an outline of
strategies for early prediction during drug devel-
opment), and use in large populations has
revealed rare but severe toxicities, such as those
observed with temafloxacin [208] and trovafloxa-
cin [209], leading to a reassessment of registered
compounds and a better appreciation of the true
cost ⁄benefit ratios. The introduction of new
compounds will certainly be made more difficult
because of these unforeseen events, and may lead
to higher hurdles that must be passed before
regulatory approvals are issued. One conse-
quence for the commercialisation of new deriva-
tives could be the initial restriction of new agents
for indications or infections in those populations
where the possible anticipated benefits are high
(e.g., severe infections caused by organisms
resistant to other classes of antibiotics), with
broader use only when safety has been assessed
satisfactorily. In parallel, proactive post-market-
ing surveillance studies [210] should be encour-
aged, since it is well-known that spontaneous
reporting does not necessarily reveal the true
impact of important unwanted side-effects.

C L I N I C A L U S A G E : T H E P R O S A N D
T H E C O N S

Table 4 presents a summary of the main indica-
tions for the use of quinolones, together with the
arguments for and against such use. Considering
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the general negative aspects, the argument
presented most frequently is the risk for selection
of resistance. As discussed above, acquisition of
resistance to quinolones seems to be a relatively
easy process, which is at variance with b-lactams,
at least in pneumococci, where the process of
acquisition of resistance has taken decades [211].
This is well-illustrated for E. coli [212,213], but, as
described above, the dynamics of the phenom-
enon may differ from one species to another [144].
The fact that certain quinolones are orientated
towards either Gram-positive or Gram-negative
bacteria, rather than having a narrow spectrum,
may actually trigger resistance in less susceptible
organisms. Another consideration is that the
absence of precise aetiological diagnostic tests
for a number of common infections contributes,
indirectly, to the overuse of quinolones as empir-
ical drugs. As for other broad-spectrum anti-

biotics, the correct approach probably involves a
more prudent use, based on a correct assessment
of the necessity and knowledge of how to pre-
scribe an antibiotic correctly in the first place
[214–216].

The second, and less disputed, argument stems
from known or suspected toxicities in specific
populations, such as pregnant or breast-feeding
women, children, or elderly patients with
co-morbidities. Although children are an import-
ant target population with respect to infections
that respond well to quinolones, such as diar-
rhoea or Gram-negative meningitis, the combined
risks of toxicity and the rapid spread of resistance
shouldcontraindicate treatingchildrenwithquino-
lones, with the possible exception of children
with cystic fibrosis (for whom close monitoring
of bacterial susceptibilities is essential) or life-
threatening infections with organisms resistant to

Table 3. Main side-effects of quinolones that contribute to the limitation of their use, the frequency observed, and the
populations at risk

Side-effect Quinolone Frequency Population at risk

Genotoxicity Pregnant women
Gastrointestinal effects
(nausea, vomiting > diarrhea)

Fleroxacin, sparfloxacin, grepafloxacina > 10%
Others 2–8% [243]

Skin reaction: phototoxicity Sparfloxacina, fleroxacina, lomefloxacina,
Bay 3118a

> 10% [244]

Others < 2.5% Cystic fibrosis [245]
Skin reactions: rash Clinafloxacina 4% [243]

Gemifloxacin 2.8% [246] Young women
Chondrotoxicity Pefloxacina 14% [247] Children, pregnant women

Others 1.5% in children (ciprofloxacin [248])
Tendinitis Pefloxacina 2.7% [249] Elderly, especially if on corticosteroid

therapy [250]
> Levofloxacin ⁄ ofloxacin ‡ ciprofloxacin 0.4% Athletes in training [251]
> Others
[252,253]

Minor CNS effects Trovafloxacin 2–11% dizziness Elderly [254]
Major CNS effects Levofloxacin 0.026% confusion, alteration in

mentation and affect [243]
Co-administration of NSAID or of
inhibitors of CYP 450 [255]

Fleroxacina [256] 8% insomnia [257]
Cardiovascular effects Sparfloxacina (9–28 ms) 2.9% Female gender

Grepafloxacina (10 ms) Co-administration of other drugs
(prolonging QTc interval or
inhibiting CYP 450 metabolism)

Moxifloxacin (6 ms)
Levofloxacin (3 ms)b

Gatifloxacin (2.9 ms)
Gemifloxacin (2.6 ms) [246,258–260] Heart disease [254]

Minor hepatic effects
(transaminase elevation)

Grepafloxacin 12–16% transaminase elevation
[243]

Others < 3% [261]
Major hepatic effects Trovafloxacina 0.006% [243] Treatment duration > 14 days

[262]
Hypoglycaemia Clinafloxacina Co-administration of oral

hypoglycemic agents [264]Gatifloxacin
Levofloxacin (one fatal case [263]

Haematological toxicity Temofloxacina 0.02% haemolysis, thrombocytopenia,
renal failure [256]

CYP 450 inhibition Enoxacina, clinafloxacina [256]
> ciprofloxacin > lomefloxacin,
ofloxacin > levofloxacin,
sparfloxacin, gatifloxacin,
moxifloxacin [262]

aSide-effects have contributed to the withdrawal or limitation in use.
bFurther studies have been requested from the manufacturer, as recent pharmacovigilance reports document a significant increase of the QTc interval, mainly in patients with
concurrent medical conditions or other medications [243,265]; see also [266] for a recent study in the province of Varese, Italy, using prescription data on all incident users of
several antibacterial and anti-arrhythmic drugs during the period July 1997 to December 1999.
NSAID, non-steroidal anti-inflammatory drug; CNS, central nervous system.
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other antibiotics. The situation may be more
complex for elderly patients, for whom co-mor-
bidities or co-medications clearly increase the
risks (Table 4). However, these considerations
should be weighed against the necessity to treat

in the most effective way what are often recurrent
polymicrobial infections, possibly involving
organisms resistant to first-line antibiotics. Future
studies should address these issues more care-
fully in order to better demonstrate the real

Table 4. Use of quinolones in the clinics: pros and cons

Indication Pros Cons References

All PK ⁄PD profile
Once-daily administration

(as compared to b-lactams)

Not recommended for children,
or breast-feeding and
pregnant women

[233,267–269]

Prudent use in elderly because of
increased risk of side-effects
(co-morbidities, concurrent
therapies)

Risk of development
of resistance

Respiratory tract infections
Acute exacerbation of
chronic bronchitis

Higher potency against
Haemophilus influenzae than
macrolides and ketolides

[14,19]

Community-acquired
pneumonia

Easy switch to oral therapy
Coverage of intracellular

pathogens

[14,19,270,271]

Polymicrobial infection
Cystic fibrosis Oral administration Joint complications more

frequent in cystic fibrosis
patients

[268]

Intensive care infections High activity against
Gram-negative bacteria,
including Pseudomonas
aeruginosa

Increasing resistance in
nosocomial pathogens

[272]

Lack of (or reduced) association
with Clostridium difficile colitis

No promotion of vancomycin
resistance in enterococci

Skin and soft tissue infections Concentration in skin and blister
fluid equivalent to serum levels

Too broad a spectrum for
uncomplicated infections

[273,274]

Coverage of Gram-positive and
Gram-negative bacteria useful in
polymicrobial infections

Resistance increasing in
Staphylococcus aureus,
including MRSA

Combination with anti-anaerobic
agent sometimes needed

Osteomyelitis Oral route shortens hospital stay
Penetration into bone

Combination with anti-anaerobic
agent sometimes needed
(e.g., for diabetics)

[275]

Association with rifampicin for
staphylococci

Abdominal infections Adequate penetration in
infected territories

Insufficient coverage
of anaerobes

[276]

Intestinal infections Good absorption, even in cases of
diarrhoea, and high
concentrations in stool

High resistance in
Campylobacter and increasing
resistance in Salmonella

[277]

Limited use in children, who are
at greatest risk of infection

High cost in developing countries
Urinary tract infections Elevated concentration in the

urinary tract (including in the
urine and in obstructed tractus)
and in the prostate

Increasing resistance [278,279]

Little dosage adaptation if renal
function impaired

Easy switch to oral therapy
Sexually transmitted diseases Intracellular penetration Less effective than macrolides

against Chlamydia
[280,281]

Resistance widespread in
Neisseria gonorrhoeae (with the
possible exception of
gemifloxacin)

Meningitis Unique dose efficient in
prophylaxis

Penetration in CSF

Concentrations lower than in
serum in non-inflamed
meninges; use limited to very
susceptible organisms
(Gram-negative bacteria)

[282]

Use restricted in the population
most at risk (children)

MRSA, methicillin-resistant Staphylococcus aureus; CSF, cerebrospinal fluid.
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usefulness of quinolones in these populations
[217].

The main advantages of quinolones are related
to their PD (bactericidal activity) and PK proper-
ties. Their ease of use (oral route, once-a-day
administration for some agents) is helpful, but
compliance should not be the main issue for
seriously ill patients. The easy switch to an oral
therapeutic route can contribute to a reduction in
the length of hospital stay, and has proven cost-
effective in various settings and countries
[218–223]. The latter argument might be quite
compelling, since it can probably be applied for
almost all types of infection in view of the wide
distribution of quinolones in the body.

With regard to specific indications, the role of
quinolones in urinary and digestive tract infec-
tions is not disputed [224,225]. Conversely, much
debate exists in relation to their use in the
treatment of abdominal and respiratory tract
infections. The latter accounts for a variable extent
of all quinolone usage among different countries
(from almost no use to c. 50% of all quinolone
consumption in the community), and the diver-
gent guidelines published by scientific societies or
national authorities [226] illustrate the difficulty of
finding a consensus position in this area [21,227].
The advantages put forward concern the better
activity of quinolones compared with macrolides
against H. influenzae strains causing acute exacer-
bations of chronic bronchitis, the activity of a
single drug against extracellular and intracellular
pathogens, the quicker switch to the oral route,
and the potential lower mortality for moxifloxacin
in comparison with b-lactams for community-
acquired pneumonia [228], although the regis-
tered dose of comparator used in this latter
study may have been sub-optimal. However, most
European guidelines have placed the so-called
respiratory quinolones as second-line antibiotics
only, with high-dose amoxycillin as the first choice
(combined with clavulanic acid for a b-lactamase-
producing organism). Such a recommendation is
based on the assumption that early coverage of the
so-called atypical organisms is not a priority, and
that true resistance of pneumococci to b-lactams
will remain low, despite continuous use [229]. The
downside of the recommendation is the subse-
quent large-scale use of amoxycillin–clavulanic
acid combinations (as seen from records of anti-
biotic prescriptions for respiratory tract infec-
tions), based on the premise that missing a

b-lactamase-producing organism may put the
patient at risk.

With respect to abdominal infections, the main
reason for limiting the use of quinolones is the
level of resistance, which, as explained above, has
become alarmingly high in certain settings. For
instance, in addition to E. coli, Bacteroides fragilis
has a more than doubled mean MIC of levo-
floxacin and moxifloxacin in the USA in the last
3 years, so that monotherapy with fluoroquinolo-
nes in intra-abdominal infections may become
unwise in the absence of appropriate surveillance
and aetiological diagnosis [230]. This may be a
consequence of the previous widespread use of
quinolones, which may have enriched first-step
mutants in the intestinal tract [231], although
efflux pump systems also contribute to resistance
[232].

Besides the still-open question of whether or not
to use a quinolone for a given indication, the other
question of importance concerns the selection of a
specific compound within the class. The answer
here is not disputable, based on the PK ⁄PD
concepts and resistance mechanisms discussed
above. The best advice would undoubtedly be to
use the most potent drug at the appropriate dose
[233] for the right infection, based on likely
aetiology, with ciprofloxacin preferred for Entero-
bacteriaceae and P. aeruginosa, and moxifloxacin
(or gemifloxacin where available) for streptococci.

C O N C L U D I N G R E M A R K S

Fluoroquinolones were introduced with a fanfare
in the mid-1980s as ciprofloxacin became the
answer to many physicians’ prayers for the
treatment of Gram-negative infections, and as
the spectre of multiresistant pneumococci made
new agents more and more desirable. As long as
these agents are used to treat the appropriate
types of patients, and are not regarded by pre-
scribers as the magic bullet, the effectiveness of
the class will survive long into the present
century. However, if they are dispensed with a
lack of concern, then their day will conclude
prematurely. As always, bacteria are smarter than
humans, and both fundamental and very practical
approaches are required to conserve antibiotics as
useful agents and not as discoveries of the past
[234,235]. Quinolones are no exception to this
rule, which makes it essential that they are used
in an educated fashion.
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Table 2. Pharmacokinetic parameters used for proposing PK ⁄PD based limits of sensitivity and conditions favouring the
prevention of emergence of resistance for most common organisms and systemic infections, together with the breakpoints
set by European and American ad-hoc organisations

Drug

Typical

daily
dosagea

Typical PK values Proposed PK ⁄PD upper limit Breakpoints (mg ⁄L)d

Cmax in mg ⁄L
total ⁄ free

(dose)

AUC24 h

(mg · h ⁄L)
total ⁄ free Efficacyb

Prevention

of resistancec
EUCAST

(S/R)

NCCLS

(S/I/R)

Norfloxacin 800 mg 1.4 ⁄ 1.1
(400 mg PO)

14 ⁄ 11 0.1–0.4 0.1 £0.5/>1e £4/8/>16j

Ciprofloxacin 1000 mg 2.5 ⁄ 1.75
(500 mg PO)

24 ⁄ 18 0.2–0.8 0.2 £0.5/>1f

(£0.125/>2)g
£1/2/>4k

Ofloxacin 400 mg 4 ⁄ 3
(400 mg PO)

40 ⁄ 30 0.3–0.9 0.4 £0.5/>1f

(£0.125/>4)g
£2/4/8l

Levofloxacin 500 mg 4 ⁄ 2.8
(500 mg PO)

40 ⁄ 28 0.3–0.9 0.3 £1/>2f

(£2/>2)h
£2/4/8l

Moxifloxacin 400 mg 3.1 ⁄ 1.8
(400 mg PO)

35 ⁄ 21 0.2–0.7 0.2 £0.5/>1)e

(£0.5/>0.5)i
£1/2/4m

EUCAST, European Committee on Antimicrobial Susceptibility Testing (http://www.eucast.org) [241].
NCCLS, National Committee for Clinical Laboratory Standards (Clinical and Laboratory Standards Institute) (http://www.nccls.org).
S, susceptible; I, intermediately resistant; R, resistant.
aIn patients with no gross abnormality of the excretory functions, and for most common tissue-based infections (thus excluding simple cystitis); based on recent typical
‘Summary of Product Characteristics’ (SPC, or ‘labelling’ in Europe). Recent guidelines, and SPC in some countries, suggest higher dosages for ciprofloxacin (up to
1200 mg ⁄day), ofloxacin (up to 800 mg ⁄day), and levofloxacin (750–1000 mg ⁄day). Because the pharmacokinetics of registered quinolones are linear with respect to doses
(within the limits of the agents registered), adaptation of the figures of Cmax and AUC24 h for doses other than those shown here can be done by simple extra- or intrapolation.
bBased on a free AUC24 h ⁄MIC ratio ranging from 30 (pneumococcocal infection ⁄ immunocompetent host) to 100 (Gram-negative infection ⁄ immunoimpaired host); see
discussion in text in support of these values as average means for free concentrations.
cBased on a minimal Cmax ⁄MIC ratio of 10, considered to encompass the ‘mutant prevention concentration’ of most susceptible isolates (see text for discussion). Application of
this criterion will also meet the requirement for larger AUC24 h ⁄MIC ratios than needed for efficacy.
dFor organisms within the main indications.
eEnterobacteriaceae only (Pseudomonas is considered to be non-susceptible).
fFor most Gram-negative organisms, including Pseudomonas; 1 for Staph. aureus with high-dose therapy.
gValues in parentheses refer to Streptococcus pneumoniae, where the wild-type population is not considered susceptible to ciprofloxacin or ofloxacin, and is therefore categorised
globally as ‘intermediate’.
hFor Strep. pneumoniae and levofloxacin, the breakpoint was increased to 2 to avoid dividing the wild-type population (see [242] for a typical example from France), but this
breakpoint relates to high dose therapy.
iFor Strep. pneumoniae, Haemophilus influenzae and Moraxella catarrhalis.
jEnterobacteriaceae and P. aeruginosa.
kStaphylococcus aureus, Enterobacteriaceae and P. aeruginosa.
lStrep. pneumoniae, Staph. aureus, Enterobacteriaceae and P. aeruginosa.
mStrep. pneumoniae.
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