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The treatment of intracellular infections requires the use of
antibiotics presenting appropriate cellular pharmacokinetic and
pharmacodynamic  properties. These properties, however,
cannot be predicted on the simple basis of cellular drug
accumulation and minimum inhibitory concentration in broth.
In most cases, intracellular activity is actually lower than
extracellular activity, despite the fact that all antibiotics reach
intracellular concentrations that are at least equal fo, and more
often  higher than the extracellular concentrations. This
discrepancy may vesult from impairment of the expression of
anfibiotic activity or a change in bacterial responsiveness
inside the cells. It therefore appears inportant to evaluate the
intracellular activity of antibiotics in appropriate models.
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Abbreviations

AUC Area under the concentration-time curve
Cmax Peak plasma concentration

MBC Minimal bactericidal concentration

MIC Minimal inhibitory concentration

MRP Multiple drug-resistance protein

PX/PD Pharmacokinetics/ pharmacodynarnics

Introduction

Over the last few years, much concern has been raised
regarding the optimization of antibiotic use, owing to the
worrying increase of bacterial resistance and to the scarcity
of new antibiotic classes. under development [1]. In this
context, progress in the field of anti-infective pharmacology
has led to the emergence of a new discipline, referred
to as pharmacokinetics/pharmacodynamics (PK/PD} of
antibiotics, which is defined as the 'discipline that strives o
understand the relationships between drug concentrations
and effects, both desirable (eg, bacterial killing) and
undesirabie (eg, side effects)' [2]. Over the past 15 years,
three key PK/PD parameters have been elaboraied (Figure 1;
for reviews, see references [3] to {6] or [7ee]), which examine
how antibiotic concentrations reached in body fluids over
time (as predicted from the pharmacokinetic profile of the
drug) compare with potentially effective antibiotic

concentrations (as deduced from the mminimal inhibitory
concentration (MIC) or minimal bactericidal concentration
(MBC) of antibiotics #n vifro). The first parameter, time at
which concentration is > MIC (t > MIC), links bactericidal
effects to time and is critically dependent on the half-life of
the drug, dosage and frequency of administration over a
given time period. The second parameter, peak plasma
concentration (Cpa/MIC, relates bactericidal effects to
concentration, and is primarily dependent on the unit dose
and the volume of distribution of the drug. The third
parameter, area under the concentration-time curve
(AUQ)/MIC, combines both types of effects, since it
corresponds to the total amount of drug to which bacteria
are exposed over the time period, and is directly related to
the total dose given during that period and inversely
proportional to the drug clearance, These parameters
appear to be critical in predicting antibiotic activity and,
therefore, in establishing dosages on a rational basis [8,9].
The application of these parameters, however, has
so far been limited fo extracellular infections in well-
vascularized tissues, because they are all based on serum
antibiotic levels,

The situation is, therefore, likely to be more complex when
attempting to predict active antibiotic concentrations for
infections developing in less accessible compartments, as is
the case for intracellular infections. Some bacteria have
adapted themselves to survive, and even multiply, within
eukaryotic cells [10»e,11]. Table 1 lists the most common
pathogens responsible for intracellular infections. Besides
well-known obligate or facultative intracellular organisms,
several extremely common bacteria are now recognized as
being able to survive intracellularly under certain
circumstances. Such infections are considered as
'opportunistic’, because no gpecific mechanism of
adaptation to intracellular survival has been highlighted so
far, and this survival is net an essential determinant in the
life cycle of the bacteria. In the intracellular environment
these bacteria become protected from humoral defenses,
and probably also from antibiotic action. This may,
therefore, contribute to the chronic or recurrent nature of
infections in which intracellular foci are present [12,13], as
classically observed for Mycobacterium or Chlamydia (for
reviews, see references [14] and [15]), and also more
recently demonsirated for Staphylococcus aureus [16-19],
streptococci [20,21we], Helicobacter pylori [22] and Escherichia
coli [23,24]. Thus, the selection of antibiotics endowed with
intracellular activity or, preferably, with mixed exiracellular
and intracellular activity, appears critical in the management
of such infections. For a discussion on the definition of
cellutar PK/PD parameters that are predictive of
intracellular activity, see reference [25]. As well as
considering the influence of drug conceniration or the time
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Cellular pharmacckinetics of antibiotics

While general pharmacokinetics relate to the absorption,
distribution, metabolism and elimination of drugs in the
body, cellular pharmacokinetics are centered on evaluation
of the penetration, distribution, degradation and efflux of
drugs in individual cells [21##,31,32]. These two fields are
closely related because the cellular disposition of a drug (eg,
its capacity to cross biological membranes, response to
enzymatic modification or transport through epithelial cells)
governs Its general fate (absorption, distribution and
elimination) in the body. Studying the pharmacokinetics of
antibiotics in eukaryotic cells is therefore of prime
importance because it defines the access of the drug to the
site of infection.

Mechanisms of antibiotic uptake, distribution and
efflux in eukaryotic cells

To gain access to exiracellular targets or to the cellular
medium within the body, drugs often use non-specific
routes of entry [31], such as diffusion or endocytosis,
depending on their physicochemical properties. Some drugs
can also take advantage of the presence of transporters that
recognize them because they share some structural
similarities with endogenous molecules or nutriments.

Accumulation and distribution

Diffusion

Diffusion is the most common way for molecules of a
sufficiently smali size (usually molecular weight < 700 Da}
and with good lipid solubility (for a review on these general
concepts, see reference [33]) to cross cell membranes, Among
the factors that dramatically affect membrane permeation, the
ionization status of the drug appears to be of prime
importance, with charged species being characterized by low
lipid solubility and almost no ability to cross membranes in
the absence of a specific transport mechanism. The actual rate
of diffusion of a drug will thus vary according to the
environmental pH, with weak bases diffusing faster at basic
pH than at acidic pH and weak acids exhibiting the opposite
behavior. As a result, weak bases tend to accumulate in
membrane-bound acidic compartments, whereas weak acids
are excluded from these sites (for a discussion of these general
concepts see reference [34], and for an application to
subcellular compartments see reference [35)).

B-Lactam antibiotics are thought to cross the cell membrane
by passive diffusion to gain access to the cellular medium.
The equilibrium concentration of these antibiotics becomes
equal on either side of the membrane, resulting in an
accunmlation factor of approximately 1 [36-38]. Being weak
acids, however, p-lactams are largely excluded from
lysosomes and related acidic vacuoles. Quinolones likely
also enter most cells by simple diffusion, but are more
concentrated inside the cells than outside at equilibrium, for
reasons which are still unclear [39,40e,41,42]. Macrolides are
among the antibiotics with the highest capacity for
accumulation in eukaryotic cells [43]. Because of their weak
basic character, cell-associated macrolides are largely
trapped in their positively charged, less diffusible form in
lysosomes, with dicationic molecules (eg, azithromycin,
erythromycylamine and telithromycin) reaching higher

levels of accumulation than monocationic molecules {eg,
erythromycin, roxithromycin, clarithromycin and
cethromycin) [44-47 ,48e].

Endocytosis

Endocytosis is a non-specific mechanism that drives poorly
diffusible molecules (ie, molecules that are too voluminous
or ioo polar) to the lysosomal compartment. Adsorption at
the cell surface, or specific interaction with surface receptors,
can greatly accelerate the rate and efficacy of the uptake
process {for a review, see reference [49]).

Aminogliycosides are the best-characterized example of
antibiotics that enter cells (kidney and ear) via a double
process of adsorptive and receptor-mediated endocytosis.
These highly polar molecules are polyaminated and bind to
the negaiively charged phespholipids of the membrane and
the endocytic receptor megalin. Megalin is a protein that acts
as a receptor for polyaminated compounds, and is
particularly abundant in renal proximal tubules, as well as
in the hair cells of the inner ear (for a review, see reference
[50]). Glycopeptides, which are voluminous melecules, also
enter cells via this endocytic route, and their level of
accumulation in the lysosomes varies considerably
depending on the type of glycopepiide. Amphiphilic
glycopeptides, such as teicoplanin, dalbavancin, telavancin
or oritavancin, reach much higher levels of accumulation in
cells than more hydrophilic molecules such as vancomycin
[51-b3]. This effect is particularly evident in the case of
oritavancin, the intracellular concentration of which is
several hundred times higher than the extracellular
concentration, which is suspected to be the result of a high
level of adsorption of the molecule at the cell surface.

Inward transport

Inward transport of drugs is observed for molecules that
have sufficient similarity to endogenous substrates of
transporters. Active inward transport of antibiotics has been
demonstrated at the surface of epithelia. This method of
intracellular accumulation contributes to the intestinal
absorption or re-absorption by renal tubular cells, and
therefore governs the pharmacokinetics profile of
antibiotics. The intestinal absorption of p-lactams
(peptidomimetic drugs bearing a free acid function) is
mediated by transporters of small peptides (eg, PEPT1
[54,55]) or of monocarboxylate compounds {eg, MCT1 [56]),
while tubular re-absorption of B-lactams occurs via peptide
transporter PEPT2 [54,55] and organic ion transporters such
as OCIN2 [57]. It is worth noting that there is a huge
variation in the level of recognition of different B-lactams by
these transporters [55], which may explain the considerable
variation in the oral bicavailability or rate of elimination of
these antibiotics. Active transport is also suspected to take
place in non-polarized, phagocytic cells. For example, it has
been suggested that transporters of purines contribute to the
accumulation of quinolones (bicyclic aromatic nuclei} in
monocytes [58].

Effiux
Efflux transporters expressed at the surface of eukaryotic
cells are involved in the extrusion of either polar, non-
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Figure 3. Correlation between the intraceflufar and the extracellular activity of antibiotics.
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The graph shows the correlation between the intracellular and extracellular activity of a series of antibictics against Lisferia monosytogenes
(panel A) and Staphylococecus aureus (pane! B), in a model of THP1 human macrophages. Activity is expressed as the change in bacterial
count iollowing 24 h of exposurs (or 5 h of expostre for oritavancin in the L monocyfogenes model) io each of the selected antibiotics at an
extraceliular concentration corresponding to its human Crae, both extraceflularly (x-axis) and in infected macrophages (y-axis). The gray
zones carrespond fo bacterial killing, while the dotted lines point to the limit of bactericidal effect (-2 log according to the recommendations of
the Clinical and Laborstery Standards Insfitute), The limit of detection was 4.2 log, and alf values below this limit were set at -5 Jog. The
diagonai line delineates the experimental points expected for drugs displaying equal extracsliular and intraceliular activities, with points
above this fine corresponding to bactericidal astivities that are higher intracellularly than extracellufarly, and below the line o activities that
are higher extracellularly than intracellularly. The graphs are based on data from references [75s], {78} and [1071.

AMP ampicillin, AZM azithromycin, CFU colony forming units, CIP ciprofloxacin, ETP ertapenem, GEN gentamicin, GRN garenoxacin, LNZ
tinezolid, LVX levofloxacin, MEM mercpenem, MXF moxifloxacin, NAF nafcillin, ORI oritavancin, OXA oxacillin, PEN V peniciliin V, RIF

rifampin, TEC teicoplanin, TEL telithromycin, VAN vancomycin.

that some antibiotic classes such as aminoglycosides and
macrolides, and also oritavancin, tightly bind to the lipid
constituents of membranes, causing even lipid deposition
within the lysosomes [46,82,83].

Intraceliular expression of antibiotic activity
Environmental effects on antibiotic expression of activity can
partly be taken into account by plotting activity as a function
of the cellular concentration, expressed in multiples of the
MIC, as determined at neutral pH for the cytosolic
L monocytogenes, but at acidic pH for the phagolysosomal
5 gureus. Figures 2C and 2D show that, in acidic milieu, this
correction negatively affects the cellular concentration of
macrolides, gentamicin and, to a lesser extent, quinoclones,
but enhances the cellular concentration of rifampin, and
marginally that of B-lactams, while not altering the cellufar
concentration of glycopeptides and linezolid. This correction
does not, however, improve the correlation between cellular
concentration and intracellular activity, suggesting that the
influence of the cellular environment extends beyond pH
effects.

Among other factors specific to the intracellular milieu of
phagocytes, cell defense mechanisms can either cooperate
with or antagonize antibiotic action. For exampie, inhibiting
oxidative burst in macrophages reduces the iniracellular
activity of quinolones against L monocylogenes, suggesting
that oxidant species reinforce the efficacy of this class of

antibiotic [84]. In contrast, global impairment of cell defense
mechanisms does not prevent the unanticipated infracellular
bactericidal effect of B-lactams against L monocytogenes [85],
suggesting that bacteria have increased suscepiibility to
these antibiotics within the cells.

Intracellular bacterial responsiveness to
antibiotics

Bacteria growing inside eukaryotic cells may undergo
drastic changes in their metabolism to adapt te the new and
sometimes hostile environment of cells compared with the
extraceliular environment. Such changes have been well
characterized for obligate and facultative bacteria, which
need to produce additional proteins to escape from
phagosomes and move in the cytosol (as observed for
Listerin or Shigella [86,87}), or to prevent the fusion of
phagosomes with lysosomes to enable the infection of
phagosomes (as observed for Legionella or Chlamydia [88}).
Recent studies examining, in a global fashion, genetic
expression or protein profiles of infracellular bacteria or
bacteria exposed to a mild acidic environment have
demonstrated multiple metabolic modifications [89-91]. It is
probable that some of these changes may influence antibiotic
action, as suggested above, which might explain the
increased sensitivity of intracellular Lisferin to P-lactams.
Also, the growth rate of some bacteria is generally reduced
inside the cells [92-94], highlighting their need to adapt to a
hostile environment. This delay in growth can contribute to
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