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a b s t r a c t

Some Mallotus species are used in traditional medicine in Vietnam and China. Some also show interesting
activities, such as antioxidant and cytotoxic ones. Combining fingerprint technology with data-handling
techniques allows indicating the peaks potentially responsible for given activities. In this study it is
aspired to indicate from chromatographic fingerprints the peaks potentially responsible for the antiox-
idant activity of several Mallotus species. Relevant information was extracted using linear multivariate
calibration techniques, both before and after alignment of the fingerprints with correlation optimized
warping (COW). From the studied techniques, Stepwise Multiple Linear Regression is least recommended
as it made an inadequate variable selection. Principal Component Regression theoretically can take largely
varying variables uncorrelated to the antioxidant activity into account. However, in practice in the actual
ndication of peaks case study this problem was limited. These problems in principle do not occur using Partial Least Squares
(PLS) models. Of the tested PLS methods, Orthogonal Projections to Latent Structures was preferred
because of its simplicity, reproducibility, reduced model complexity and improved interpretability of
the regression coefficients, yielding a clearer view on the individual contribution of the compounds. Fur-
thermore, reducing analysis times from 60 min to 35 and 22.5 min resulted in the same main compounds,
indicated responsible for the antioxidant activity. Models built after alignment by COW did not result in

additional information.

. Introduction

Traditional medicines (TM), including plant-, animal- and
ineral-based products, are used to cover a large part of the pri-
ary health care needs in Asia, Africa and Latin America. Also in

ndustrialized countries, adaptations of TM, defined as complemen-
ary or alternative medicines (CAM), are gaining importance. The

ain problem is that the quality of the TM is not always sufficiently
valuated. To ensure the patients safety it is extremely important
o use medicines which are identified and of which the quality is
ssessed [1–3].

Although interesting, identification of just a few compounds

ardly describes the complex nature of herbal medicines and

gnores synergic interactions between the compounds. Moreover,
he concentrations of the herbal constituents may vary signifi-
antly depending on the harvest season, the cultivation conditions

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden).

003-2670/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2009.07.020
© 2009 Elsevier B.V. All rights reserved.

and the drying processes, making it difficult to determine and
isolate compounds of interest [4,5]. Therefore, quality control
of TM in general, by assaying just a few compounds, is unreli-
able.

Recently, the World Health Organization (WHO) has introduced
and accepted chromatographic fingerprint techniques as a strat-
egy for the assessment of herbal medicines [2,6]. A fingerprint
obtained by, for instance, High-Performance Liquid Chromatogra-
phy (HPLC) characterizes the composition of the herbal sample.
It can be used to evaluate the authenticity and stability of herbal
samples [7–12]. Nowadays, the combination of (hyphenated) chro-
matographic instruments and chemometrical approaches for data
(pre-)treatment allows a fast investigation of the herbal samples
[13–17].

Some Mallotus species, belonging to the family of the Euphor-

biaceae, are used in TM in Vietnam and China. The roots, stem barks,
leaves and fruits are used for the treatment of chronic hepatitis and
enteritis since hundreds of years [18] and provide a broad basis
for researchers looking for new pharmaceutical active compounds.
Many studies are performed about the chemical components of

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:yvanvdh@vub.ac.be
dx.doi.org/10.1016/j.aca.2009.07.020
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iven Mallotus species and several pharmacologically active con-
tituents were determined [19–24].

In this study, it is aspired to indicate and identify peaks
otentially responsible for the antioxidant activity of some Mal-

otus species. The antioxidant activity of the herbal extracts was
etermined with a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical
cavenging activity test [25]. Combining this information with the
hromatographic fingerprints from the corresponding herbal sam-
les allows constructing a multivariate regression model [26]. In
he actual study, several linear multivariate calibration techniques
ere evaluated and compared, i.e. Stepwise Multiple Linear Regres-

ion [27], Principal Component Regression [28–30], Partial Least
quares [28–30], Uninformative Variables Elimination-Partial Least
quares [31] and Orthogonal Projections to Latent Structures [32].
ince alignment is strongly recommended to correct for peak shifts
aused by variations in mobile phase composition, column age-
ng and instrument instability, results with and without alignment

ere compared. Several aligning techniques are described in the
iterature, such as dynamic time warping [33], parametric time

arping [34] and fuzzy warping [35]. In our application, correla-
ion optimized warping [33,34,36] was applied on the analytical
ignals.

The emphasis of this paper lies on the interpretation of the
egression coefficients related to the different models in order to
ndicate peaks potentially responsible for the antioxidant activity
f the Mallotus samples. In a next paper (Part II), the results of LC-
S analyses on the herbal samples will be discussed in combination
ith the indicated potential antioxidant compounds.

. Theory

.1. Data preprocessing

Chromatographic fingerprints can be organized in an n × p data
atrix X, where the n objects (herbal samples) constitute the

ows and the p variables (measuring time points) the columns.
he results of chemometric data treatment are influenced by the
pplied preprocessing. In this study, different methods to pretreat
he data are applied and compared, i.e. column centering, normal-
zation, standard normal variate and alignment of the data.

Useful information resides in the between-sample variation of
he variables, not in their absolute levels. To remove the level dif-
erences, column centering is a generally applied preprocessing
echnique. By removing the column mean from each corresponding
alue, every centered variable has a mean of zero. Normalization of
he signal is also commonly applied. Normalization removes unde-
ired effects due to unequal amounts of injected samples. It divides
ach row, corresponding to a fingerprint, by its norm. Finally, stan-
ard normal variate (SNV) transformation, used to remove slope
ariation, was also examined. Hereby each row is corrected indi-
idually by row centering followed by row scaling, meaning that
he row mean-corrected fingerprints are scaled by the standard
eviation calculated for each fingerprint individually [30].

Alignment or warping has an important place in the prepro-
essing of fingerprints. Along the time axis of chromatograms, peak
hifts occur caused by variations in mobile phase composition, col-
mn ageing and instrument instability. Warping corrects for these
hifts, aligning corresponding peaks. In this study, correlation opti-
ized warping (COW), was applied [33,34,36]. COW aligns two

ignals by means of piecewise linear stretching and compression

f the chromatogram to match it as good as possible with a target
hromatogram. At the beginning of the procedure, both signals, the
rofile to be aligned (P) and the target profile (T) are divided into
user-specified number of equal-length sections (N). Each section
f the profile P has its length stretched or shortened by shifting the
ica Acta 649 (2009) 24–32 25

position of its section end point by a limited number of data points,
i.e. the user-specified slack parameter (t) [34,36]. The slack allows
the section end points to shift from −t to t points. For each section of
P, the stretched or shortened sections are interpolated to the corre-
sponding section of T and the correlation coefficient between both
sections is computed. More detailed information can be found in
ref. [36].

2.2. Exploratory analysis: Principal Component Analysis

Principal Component Analysis (PCA) [28–30] reduces the num-
ber of variables and allows visualizing information included in the
n × p matrix X. By linear combinations of the original variables, PCA
produces the so-called latent variables or principal components
(PC), in such a way that they describe the largest possible variation
in X. PCA keeps determining PCs describing the largest remaining
variation in X, orthogonal to the earlier defined, until a maximal
number of PCs equal to n − 1 (when n < p). The projections of the n
objects in the original data space on PCi are the scores on PCi. The
contribution of each original variable to the score is reflected by
its loading. Both the obtained scores and the loadings can be used
for exploratory analysis of the original data. Score plots give infor-
mation regarding the (dis)similarity of the objects, e.g. about their
clustering tendency, while loading plots provide information about
the contribution of the original variables.

2.3. Linear multivariate calibration techniques

In general, linear multivariate calibration techniques study the
relationship between an n × p data matrix X and an n × 1 response
vector y. Over the years several techniques have been described
[27,28,31,32], but there is no single best method to analyze all pos-
sible data.

The relationship between X and y can be described as:

y = Xb + f (1)

where b represents a p × 1 vector of regression coefficients that
express the contribution of the variables to the final model, and f the
n × 1 residual vector containing information that is not explained
by the regression coefficients. In this study, the regression coeffi-
cients from several linear multivariate calibration techniques are
evaluated.

2.3.1. Stepwise Multiple Linear Regression
Multiple Linear Regression (MLR) [27] produces a linear model

(Eq. (2)) describing a quantitative property (dependent variable) by
means of independent variables. The regression coefficients bi are
obtained using the least squares method to minimize the residu-
als (Eq. (3)). Each variable xi is then multiplied by its regression
coefficient bi to obtain the predicted value for y, noted as ŷ.

ŷ = b0 + b1x1 + b2x2 + . . . + bnxn (2)

b = (XTX)
−1

XTy (3)

A requirement to apply classical MLR is that the number of
objects n (i.e. fingerprints) is larger than the number of independent
variables p. When this condition is not met, a number of variables to
include in the regression model should be selected. Stepwise Mul-
tiple Linear Regression includes a stepwise selection procedure to
achieve this [27].
2.3.2. Principal Components Regression
Principal Components Regression (PCR) uses the latent variables

created by PCA to build an MLR model. The optimal model com-
plexity, i.e. the optimal number of PCs in the model, is based on
their correlation with y [37] or their ability to predict y [38]. For
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his study, the latter was chosen based on best-subset selection
CR (BSS-PCR) [39]. The PCs to be retained and the sequence in
hich they have to be entered are selected using Step-MLR and the

egression coefficients b are obtained using Eq. (3).
The optimal model complexity is then determined by the leave-

ne-out cross-validation procedure (LOO-CV). During LOO-CV each
th object is left out once and for the remaining objects the model
s built. The root mean squared error of cross-validation (RMSECV)
Eq. (4)) is then calculated for models with different complexities
28]:

MSECV(f ) =

√√√√ N∑
i=1

(ŷcv,i − yi)
2

N
(4)

here f is the model complexity, N the number of calibration
amples, yi the measured response of the ith sample, and ŷcv,i

he corresponding response predicted from the calibration model
btained without the ith sample. The optimal model complexity
orresponds to the number of latent factors resulting in nearly the
owest RMSECV.

.3.3. Partial Least Squares
Partial Least Squares [28–30] is another latent-variables tech-

ique to express the relation between X and y, which maximizes the
ovariance between X and y. The technique uses the non-linear iter-
tive partial least squares algorithm (NIPALS) [28]. The PLS model
an be presented as follows:

= TPT + E (5)

= TPTb + f = Tq + f (6)

= Pq (7)

here T represents the n × n score matrix for X and y, P the p × n
oading matrix representing the regression coefficients of X on T, E
he n × p residual matrix of X, b the p × 1 vector of PLS regression
oefficients, q the n × 1 loading vector representing the regression
oefficients of y on T, and f the n × 1 residual vector of y. The optimal
odel complexity is determined by the LOO-CV procedure.

.3.4. Uninformative variable elimination by PLS
Uninformative variable elimination by PLS (UVE-PLS) [31] aims

o remove uninformative variables in multivariate data, i.e. those
ot containing more information than random noise. While con-
tructing the PLS model, a matrix R, containing artificial noise
ariables is added to the original data. All experimental variables
hat are not more important than the added noise are consequently
emoved. The procedure is repeated until the number of informa-
ive variables is stabilised, resulting in the data matrix Xnew. A final
LS model is built using Xnew and y (Eqs. (5–7)) and its complex-

ty is optimized using LOO-CV. More detailed information can be
ound in ref. [31].

.3.5. Orthogonal Projections to Latent Structures
Orthogonal Projections to Latent Structures (O-PLS) [32] makes

se of a modified NIPALS algorithm which removes the variation in
that is not correlated to y. This is done by subtracting PLS com-

onents, orthogonal to y, from the original X data. Consequently,
he original data is split into two data sets, one that contains the
-relevant information and another with the orthogonal data.

An O-PLS model can be written as follows:
= TPT + TYoscPT
Yosc + E (8)

= TPTb + f = Tq + f (9)

= Pq (10)
ca Acta 649 (2009) 24–32

where T represents the orthonormal n × n score matrix for X and y,
P the orthonormal p × n loading matrix representing the regression
coefficients of X on T, TYosc the orthogonal n × n score matrix for X
and y, and PYosc its corresponding orthogonal p × n loading matrix,
E the n × p residual matrix of X, b the p × 1 vector of regression
coefficients calculated, q the n × 1 loading vector representing the
regression coefficients of y on T and f the n × 1 residual vector of y.

Removing the orthogonal information of the original data set
reduces the number of PLS components in the O-PLS model to
a single component, allowing an improved interpretability of the
regression coefficients.

3. Experimental

3.1. Herbs and preparation of the herbal extracts

39 Mallotus samples, from at least 17 different species, were
collected in different Vietnamese regions (Table 1). Six samples
were unidentified. Depending on the species and the applicable
nature conservation laws, the leaves, roots and/or bark were used.
All samples were authenticated by Professor Nguyen Nghia Thin
(Hanoi National University, Vietnam) and deposited at the Institute
of Natural Products Chemistry, Hanoi, Vietnam.

Extracts were prepared by weighing 2.5 g plant sample and
extracting three times with 25 mL methanol in an ultrasonic bath
(Branson Ultrasonic Corporation, Connecticut, USA) at a temper-
ature between 40 and 50 ◦C during 1 h. The extract was filtered
through a 240 nm pore size filter paper (Whatman, Hanoi, Viet-
nam) and evaporated at decreased pressure (60 Pa) and elevated
temperature (50 ◦C). The obtained crude extract was divided over
three sample tubes, i.e. one for the DPPH radical scavenging assay,
one for HPLC analysis, and one as a library sample.

3.2. HPLC

3.2.1. Equipment, chemicals and reagents
An Agilent 1050 HPLC system (Waldbronn, Germany), con-

sisting of a vacuum degasser, quaternary pump, autosampler
and a variable wavelength UV detector, was used. Two coupled
ChromolithTM Performance RP-18e columns (100 mm × 4.6 mm
I.D.) with a ChromolithTM RP-18e guard column (5 mm × 4.6 mm
I.D.) contained the stationary phase. Data acquisition and pro-
cessing was done with Chemstation for LC (Agilent). HPLC grade
methanol, acetonitrile (both Fisher Scientific, Leicestershire, UK),
trifluoroacetic acid (TFA) (Sigma–Aldrich, Steinheim, Germany) and
MilliQ water, obtained from a MilliQ purification system (Millipore,
Bedford, MA), were used to prepare the mobile phases. All sol-
vents were degassed during 15 min on an ultrasonic bath (Branson
Ultrasonic Corporation, Danbury, CT) prior to HPLC analyses.

3.2.2. Sample preparation
Samples for HPLC analysis were prepared diluting 50.0 mg crude

extract in 2.0 mL methanol. The solution was mixed during 15 min at
400 rpm on a shaking bath (Edmund Bühler, Hechingen, Germany)
and afterwards filtered through a 2 �m pore size filter (Schleicher
& Schuell, Dassel, Germany) followed by filtration through a 25 mm
syringe polypropylene membrane with 0.2 �m pore size (VWR
International, Leuven, Belgium).

For the standard compounds mallonanoside A and B [40],
quercetin and myricetin, 1.0 mg standard was weighed and dis-
solved in 10.0 mL methanol. Then, the same procedure was followed

as for the crude extracts.

3.2.3. Chromatographic conditions
The conditions developed in [26] were chosen. The mobile phase

consisted of (A) 0.05% TFA in ACN, and (B) 0.05% TFA in MilliQ
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Table 1
The Mallotus samples with their voucher number, species, origin, collection time, used part of the plant and the DPPH scavenging activity results indicated.

Sample Voucher number Species Origin Collection time Part of plant %DPPHrem (n = 3) s

1 01 Mallotus luchenensis Son La July 2006 Leaves 82.0 12.1
2 02 Mallotus microcarpus Son La July 2006 Leaves 63.6 13.0
3 03 Mallotus barbatus Son La July 2006 Leaves 79.4 9.7
4 MA07 Mallotus sp1 Van Hoa April 2006 Leaves 113.0 20.5
5 NT01 Mallotus barbatus Hagiang November 2006 Leaves 77.2 10.4
6 NT02 Mallotus paniculatus Hagiang November 2006 Leaves 82.2 5.5
7 NT03 Mallotus metcalfianus Hagiang November 2006 Leaves 51.1 14.6
8 MA01 Mallotus apelta (Ma1) Tam Dao July 2006 Leaves 94.5 0.4
9 MA02 Mallotus apelta (Ma2) Tam Dao December 2006 Leaves 92.5 3.3
10 MA03 Mallotus paniculatus Tam Dao April 2006 Leaves 58.4 5.4
11 SP4 Mallotus sp2 Langson March 2006 Leaves 56.8 3.9
12 SP5 Mallotus philippinensis Langson March 2006 Leaves 98.9 12.7
13 MA11 Mallotus macrostachyus Langson March 2006 Leaves 75.7 2.2
14 MA12 Mallotus microcarpus Quangbinh March 2006 Leaves 83.1 2.0
15 MA13 Mallotus pallidus Quangbinh March 2006 Leaves 65.3 1.9
16 MA14 Mallotus oblongifolius Quangtri March 2006 Leaves 6.7 0.3
17 MA15 Mallotus floribundus Langson November 2006 Leaves 6.4 0.2
18 MA16 Mallotus cuneatus Langson November 2006 Leaves 86.9 3.2
19 MA17 Mallotus cuneatus Quangbinh December 2006 Leaves 10.3 4.1
20 MA18 Mallotus sp3 Quang tri December 2006 Leaves 91.6 4.1
21 MA19 Mallotus yunnanensis Lang Son November 2006 Leaves 91.6 6.6
22 MA20 Mallotus poilanei Ke Bang March 2006 Leaves 90.5 7.0
23 MA22 Mallotus hookerianus Dakrong March 2006 Leaves 50.0 4.6
24 MA23 Mallotus nanus Daclak March 2006 Leaves 78.4 9.5
25 MA24 Mallotus sp4 Daclak March 2006 Leaves 56.9 11.7
26 M25 Mallotus oreophilus LaoCai June 2006 Leaves 88.8 10.5
27 MA28 Mallotus philippinensis Cucphuong December 2006 Leaves 22.3 10.0
28 MA29 Mallotus barbatus Cucphuong December 2006 Leaves 11.3 4.8
29 MP31L Mallotus paniculatus VQG Pumat September 2006 Leaves 73.5 8.5
30 MP3R Mallotus paniculatus VQG Pumat September 2006 Roots 91.5 5.7
31 MP33L Mallotus paniculatus Bach Ma-TTH October 2006 Leaves 81.5 3.8
32 MP34R Mallotus paniculatus Bach Ma-TTH October 2006 Roots 83.5 6.6
33 MP35R Mallotus paniculatus Cucphuong December 2006 Roots 27.9 11.3
34 MP36L Mallotus paniculatus Cucphuong December 2006 Leaves 75.3 8.8
35 MN37R Mallotus nanus VQG-Bachma May 2006 Roots 12.2 1.7
36 MN37L Mallotus nanus VQG-Bachma May 2006 Leaves 4.5 1.0
37 MN39C Mallotus nanus VQG-Bachma May 2006 Bark 27.1 4.7
3
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9 M41C Mallotus sp6 VQG Bavi

he highly antioxidant samples are marked in bold.

ater. Gradient elution was applied. For 60 min fingerprints, the
radient was 5–20% A in 0–25 min, 20–95% A in 25–50 min, and
5% A during 50–60 min. For 35 min fingerprints, it was 5–25% A in
–12.5 min, 25–95% A in 12.5–25 min, and 95% A during 25–35 min,
hile for 22.5 min fingerprints 10–30% A in 0–6.25 min, 30–95% A in

.25–12.5 min, and 95% A during 12.5–22.5 min was used. Column
emperature was 25 ◦C, flow rate 1.0 mL min−1, injection volume
0 �L, and detection wavelength 254 nm.

.3. DPPH radical scavenging test

The DPPH antioxidant activity scavenging test [25] measures
he capacity to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl
adical (DPPH◦). In its radical form, DPPH has an absorption band
t 515 nm, which disappears upon reduction by an antiradical
ompound. The remaining DPPH◦ concentration in the reaction
edium is then estimated from a calibration curve. The percentage

f remaining DPPH◦ (%[DPPH◦
rem]) is expressed as follows:

[DPPH◦
rem] = [DPPH◦

20 min]
[DPPH◦

0 min]
× 100 (11)

here [DPPH◦
0 min] is the starting concentration of DPPH radicals,

nd [DPPH◦
20 min] the remaining concentration after 20 min of incu-
ation with the sample.
An aliquot (50 �L at a concentration of 20 �g mL−1) of a MeOH

olution containing sample or a positive control (tocopherol) was
dded to 2.5 mL of daily prepared DPPH◦ solution (25 �g mL−1 in
ethanol). An equal volume (50 �L) of the solvent (methanol) was
August 2006 Leaves 73.7 8.7
August 2006 Bark 65.6 8.0

added to control tubes ([DPPH◦
0 min]). The DPPH◦ concentration

in the reaction medium was calculated from a linear calibration
curve at concentrations ranging from 1 to 50 �g mL−1. Absorbance
at 515 nm was measured on a Uvikon 933 spectrophotometer
20 min after starting the reaction. All experiments were performed
in triplicate. The reported results (Table 1) are the averages and
standard deviations of three independent measurements. The aver-
age standard deviation for the 39 Mallotus samples was found to
be 6.7.

3.4. Data analysis

Computations were performed on a PC with an Intel Core 2 Duo
E6750 processor containing 2 GB RAM and running Microsoft Win-
dows XP and MatlabTM 7.1 (The Mathworks, Natick, MA). All data
(pre)processing is performed using m-files written for MatlabTM 7.1.

4. Results and discussion

4.1. DPPH radical scavenging test

The results (Table 1) show that only nine samples are con-

sidered to have a high antioxidant activity (%DPPHrem < 30), i.e.
Mallotus oblongifolius (sample 16), Mallotus floribundus (17), Mal-
lotus cuneatus (19), Mallotus philippinensis (27), Mallotus barbatus
(28), Mallotus paniculatus (33) and three Mallotus nanus samples
(35–37). Two are considered to have an intermediate antioxidant
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Fig. 2. PC1–PC2 score plot for 60 min fingerprints of the 39 Mallotus samples, nor-

Fig. 1. 60 min fingerprints of the Mallotus extracts.

ctivity (30 < %DPPHrem < 50), i.e. Mallotus metcalfianus (7) and Mal-
otus hookerianus (23).

M. philippinensis and M. barbatus both have antioxidant and non-
ntioxidant samples present, with the antioxidant samples having
heir origin in Cucphuong. From eight M. paniculatus samples, only
he roots from the species with origin in Cucphuong present high
ntioxidant activity. For M. nanus, only the three samples (roots,
eaves and bark) with origin in Bachma possess a high antioxidant
ctivity, while those from Daclak did not. Further results and discus-
ion about the variability within the species and possible influences
f origin and collection of the samples will be reported in a next
aper.

.2. HPLC fingerprints

Fingerprints with different length (60, 35 and 22.5 min) have
een developed. Because there are at least 17 different Mallotus
pecies present (Table 1), the fingerprints are very different (Fig. 1).
herefore, it is most likely that different pharmaceutical activities
an be attributed to different species.

As the shorter fingerprints show more co-eluting or overlapping
eaks, it will be evaluated whether this will lead to a significant loss
f information during the data analysis.

.3. Evaluation of antioxidant activity

.3.1. Data preprocessing
Different preprocessing methods, i.e. column centering, normal-

zation followed by column centering and standard normal variate
ollowed by column centering, were evaluated. It was found that
or all applied linear multivariate calibration techniques, normal-
zation followed by column centering gave the best results for
his specific data set (see further). All further discussed results are
cquired by data preprocessed in this way.

When shifts in retention times are observed between chro-
atograms, alignment of the corresponding peaks is needed.
owever, because of the great divergence in the HPLC fingerprints
f the different Mallotus species, peak alignment turned out to be
ar from evident. It is in fact difficult to know which peaks corre-
pond and should be aligned, since no diode array detector (DAD)
r mass spectrometry (MS) data were available for the entire data
et. Nonetheless, an attempt to align the long fingerprints (60 min)
pplying correlation optimized warping was performed.
As reference chromatogram, the mean of all 39 fingerprints was
alculated. Correlation to the mean chromatogram ranged between
.53 and 0.83 prior to alignment, and between 0.56 and 0.88 after
lignment. On average, correlation to the mean increased from 0.69
o 0.74.
malized and column centered. Three groups are distinguished, i.e. containing (a)
samples 35-36-37 (�), (b) samples 4-8-9 (�), and (c) samples 6-10-29-30-31-32-
33-34-38-39 (�). The nine highly active antioxidant samples are marked in bold.
The remaining samples are indicated with x.

The warped fingerprints (not shown) did not result in improved
models or regression coefficient plots. Moreover, one may wonder
about the validity of the alignment because of the high complex-
ity of, and the differences between, the Mallotus samples. The use
of a diode array detector or mass spectrometer may provide infor-
mation to obtain a more correct alignment of the chromatograms.
However, given the above results, in the rest of the paper we worked
on the unaligned data set.

4.3.2. Exploratory analysis: Principal Component Analysis
To verify whether groups of samples, occasionally with similar

antioxidant activity, could be distinguished, Principal Components
Analysis was applied.

When examining the PC1–PC2 score plot (Fig. 2) of the 60 min
fingerprints, the samples with antioxidant activity (marked in bold)
are not densely clustered. Nevertheless, they are all situated more
or less centrally in the plot. Combining the proximity of the sam-
ples on the score plot and the a priori knowledge of their recorded
fingerprint profiles and species results in the distinction of three
groups, i.e. containing (a) samples 35-36-37 (�), (b) samples 4-
8-9 (�), and (c) samples 6-10-29-30-31-32-33-34-38-39 (�). The
remaining samples were labelled with x and according to the above
used criteria cannot be further split in subgroups.

These groups allowed extracting additional information about
samples of unknown species. From the fingerprints of group (b) it
can be assumed that Mallotus sp1 (sample 4) belongs to the species
Mallotus apelta since similar fingerprints are obtained. Similarly,
group (c) consists of the fingerprints of eight M. paniculatus samples
(6-10-29-30-31-32-33-34) and two unidentified samples (38 and
39). As these two latter have similar profiles, they probably belong
to the M. paniculatus species.

4.3.3. Linear multivariate calibration techniques
Models were built, using several linear multivariate calibration

techniques, with data matrix X consisting of the 39 fingerprints,
and response vector y, representing the DPPH radical scavenging
test results. No division of the data into a calibration set and a test
set was made since the data set is not large enough and prediction of
the antioxidant activity of new samples is not the primary concern.
The data set also contains too few samples with antioxidant activity

versus too many samples without to be very suitable as calibration
set to build predictive models.

All models were built for the three fingerprints lengths. The opti-
mal model complexity was determined from the RMSECV obtained
from LOO-CV. For all applied techniques, the simplest model with
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Table 2
Number of components and RMSECV for the calibration models build based on the 22.5, 35 and 60 min fingerprints using normalization and column centering as preprocessing.

Calibration technique 22.5 min fingerprints 35 min fingerprints 60 min fingerprints

# of components RMSECV # of components RMSECV # of components RMSECV

Step-MLR 10 15.3 14 16.3 9 16.2
PCR 3 21.8 7 15.1 6 15.1
PLS 6 11.4 7 13.7 5 12.7
UVE-PLS 4 7.5 4 9.0 3 11.6
O-PLS 1 (1*) 13.4 1 (1*) 14.2 1 (1*) 13.8

For O-PLS, the number of removed orthogonal components is given between brackets.

Table 3
Results from the DPPH radical scavenging assay and predictions from the models built with the 60 min fingerprints. Preprocessing: normalization and column centering.

Sample no. DPPH Step-MLR PCR PLS UVE-PLS O-PLS O-PLS (aligned)

16 6.7 −35.6 8.2 5.4 6.1 0.5 −1.1
17 6.4 20.9 19.3 27.6 19.6 15.5 −13.3
19 10.3 38.8 33.5 21.9 25.9 28.7 31.9
27 22.3 12.3 48.5 41.3 30.6 44.8 50.6
28 11.3 54.5 56.7 46.6 58.8 47.3 63.8
33 27.9 64.7 53.5 49.5 38.8 48.8 56.6
35 12.2 27.8 12.9 24.5 16.4 9.1 10.1
3
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early the lowest RMSECV was chosen. The differences in prediction
rror and model complexity were evaluated for models selected for
he different techniques. However, the main focus of this study was
n the interpretability of the regression coefficients given by the dif-
erent multivariate calibration models as indication for peaks with
otential antioxidant activity.

Table 2 shows the calibration results for all fingerprint lengths
fter application of normalization and column centering as prepro-
essing approach.

With the exception of the PCR model, those with the shortest fin-
erprints have the smallest RMSECV, which is most pronounced for
he UVE-PLS technique, 7.5 (against the average standard deviation
f 6.7 for the DPPH reference test). However, to indicate interesting
eaks it is better to evaluate the longer fingerprints where peaks
re not or less overlapping.

For the nine highly antioxidant samples (16, 17, 19, 27, 28, 33, 35,
6 and 37) none of the techniques predicted all nine as being highly
ctive (%DPPHrem < 30), with a range between five and seven out of
ine (Table 3). For instance, PLS and O-PLS predicted the same three
amples as intermediate active (30 < %DPPHrem < 50), Step-MLR pre-
icted one intermediate active and two non-active (%DPPHrem > 50)
amples, PCR predicted two intermediate active and two non-active
amples and UVE-PLS predicted one intermediate and one non-
ctive sample. None of the models predicted antioxidative activity
or non-active samples. Furthermore, prediction of the antioxidant
amples by Step-MLR shows a large bias compared to the other
odels (Table 3). This might have implications on the reliability of

he regression coefficients.
Concerning model complexity, O-PLS resulted in the lowest

omplexity as it removes the orthogonal information to obtain a
ingle-component PLS model. By doing so, only the information
f data matrix X (fingerprints) correlated to the response vector
(antioxidant activity) is kept resulting in a significant amelio-

ation of the RMSECV compared to the matching one-component
LS model (RMSECV = 13.8 versus 17.1 for one orthogonal projection
emoved).
.3.4. Regression coefficients
The main focus of this study is to indicate those peaks in the fin-

erprints potentially responsible for the antioxidant activity of the
easured samples. For this purpose, the regression coefficients of
19.1 17.2 24.5 23.0
18.8 23.0 38 4.2

18.6 18.3 21.0 26.2

the models are examined. On the regression plots (Fig. 3), the coef-
ficients indicating peaks corresponding to potential antioxidant
compounds or to those representing a similar behaviour, i.e. that are
present at high concentration when the antioxidant activity is high,
are negative as the DPPH radical scavenging test results decrease
with increasing activity. Positive regression coefficients represent
compounds that show an opposite behaviour to the antioxidant
activity. To evaluate which modelling technique gives the best inter-
pretable regression coefficients, they are compared for the 60 min
fingerprints of the antioxidant samples (Fig. 3).

The stepwise selection procedure included only 9 variables of
the 18,000 available data points. Only three variables are selected
at the maximum of a peak, while the others are located at the
beginning or tail of a peak, as well as at very minor peaks or at
the baseline. One would expect the variables to be selected at the
maximum of a peak, since higher concentration correlates to higher
contribution to the antioxidant activity. Furthermore, the regres-
sion coefficients did not correspond to any peak of the highly active
samples 16, 17, 19 and 27. One may question the reliability of these
variables and their contribution to the antioxidant activity.

For PCR, the selection procedure included six PCs (3, 4, 5, 6, 8
and 12). Several major negative (and positive) peaks can be noticed
in the regression plot. However, the true correlation of the coeffi-
cients to the antioxidant activity may a priori be questioned. The
selected PCs are created based on the largest remaining variance
within the data matrix X. Only afterwards, the selection procedure
includes the PCs based on their ability to predict y. Anyway, the
PCR regression coefficients correlate rather well to the O-PLS coef-
ficients (see further) that are obtained taking the y-information into
account and which were further considered as best to interpret and
to indicate relevant peaks.

In the regression plot of the PLS model, large and small coef-
ficients, both negative and positive, can be noticed. The large
coefficients correspond to compounds potentially important for the
modelled activity, while the small are caused by the orthogonal
variation present in the data matrix X [32]. Therefore, they are con-

sidered unimportant, but the presence of these small coefficients
renders interpretation of the regression plot harder in regards of
identifying the potentially interesting peaks. However, theoretically
this regression plot gives a better representation of the true con-
tributions of components to the antioxidant activity compared to
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ig. 3. Plot of the 60 min fingerprints of the antioxidant samples with compounds m
eak) and quercetin (fourth peak). The bottom plots show the regression coefficie
olumn centering.

CR as the correlation between the chromatographic data (X) and

he antioxidant activity (y) is also taken into account. For exam-
le, at about 55 min, the PLS model present some regression peaks,
hile PCR does not. However, overall for this case study the PCR

oefficients seem to agree rather well with the PLS ones.

Fig. 4. The O-PLS regression plots for the 60, 35 and 22.5 min fingerprints.
anoside B (first peak of standards), mallonanoside A (second peak), myricetin (third
m Step-MLR, PCR, PLS, UVE-PLS and O-PLS, preprocessed with normalization and

When correlating the regression plot of UVE-PLS to the finger-
prints, not all regression coefficient peaks correspond to substance
peaks, but occasionally also to baseline, e.g. some negative regres-
sion peaks between 29.8 and 31.1 min (Fig. 3). Furthermore, several
minor peaks seen in the fingerprints were considered as uninforma-
tive by the stability criterion of the technique and thus eliminated
from the final data set. One may question the reliability of the
stability criterion in our context as uninformative data points
might be included, while elimination of real peaks may result in
a loss of information. Decreasing the considered cut-off value in
UVE-PLS to select more variables did not result in inclusion of
the eliminated peaks, while even more baseline variables were
selected.

Also, we did not experience UVE-PLS as a user-friendly tech-
nique. First one has to define the number of added noise variables
and the cut-off level to consider. As it concerns an iterative method,
calculations should be repeated till the stability criterion is met

and the number of variables is constant. Moreover, small differ-
ences could be distinguished in the model regarding the selected
variables, the RMSECV, the model complexity and the regression
coefficients upon changing the size of R or repeating the calcula-
tions.



Chim

m
s
r
c
c
c
o
r

t
p
d
s
i
t
i
n
a
t
t

t
r
p
k
n
p
r

fi
s
c
p
s
p
f
b
d
m
P

5

t
b
r
u
O
r
m
o

b
L
a
o
t
a
n
o
t
t
s

[

C. Tistaert et al. / Analytica

The regression plot obtained from the one-component O-PLS
odel after removal of one orthogonal projection, turns out much

moother than the others (with the exception of PCR). Due to the
emoval of the orthogonal information of the original data, small
ontributions, rendering the interpretation of the regression coeffi-
ients hard, are avoided. The (negative) regression coefficient peaks
learly correspond to substance peaks in the fingerprints. Removal
f more than one orthogonal projection did not result in changed
egression.

The fingerprints of the highly active antioxidant samples and
he O-PLS regression coefficients are compared (Fig. 3). The peaks
otentially responsible for the antioxidant activity can clearly be
istinguished in the fingerprints of the active samples. Two of the
tandard compounds, mallonanoside A and B, align with peaks
dentified as possibly antioxidative. These two compounds are iden-
ified in M. nanus species [40], which are also the species involved
n the fingerprints shown (samples 35–37). Further investigation is
eeded to identify the compounds as indeed being mallonanoside A
nd B and to evaluate their real antioxidant activity, as well as iden-
ification and evaluation of the underlying unknown compounds of
he indicated peaks (see Part II).

The antioxidant samples have no major peaks present at reten-
ion times corresponding to the positive coefficient peaks in the
egression plot. Some of these coefficients match compounds
resent in the fingerprints of M. apelta (samples 4, 8 and 9). It is
nown that M. apelta possesses cytotoxic activity [41–43]. Further,
one of the negative regression peaks correspond to a substance
eak in the M. apelta samples, which is in accordance with the
esults of the DPPH test.

Calculations for O-PLS were also made for the 35 and 22.5 min
ngerprints. Both analysis and calculation times are reduced con-
iderably. On the regression plots (Fig. 4) the major negative
oefficients corresponding to the potentially antioxidant com-
ounds are found, also on the shorter fingerprints. For this case
tudy, the shorter fingerprints still seem to allow indicating the
eaks of interest. However, the coefficient peaks 3 and 5 are splitted

or the 60 min fingerprints. Further analysis (e.g. by LC-MS) should
e performed to verify whether these split peaks correspond to
ifferent compounds in the fingerprint or are caused by experi-
ental shifts in retention time. The results will be discussed in

art II.

. Conclusions

Several linear multivariate calibration techniques were applied
o fingerprints of Mallotus extracts to indicate the peaks responsi-
le for the antioxidant activity. This was done by examining the
egression coefficients of the different calibration models after
sing several preprocessing methods and alignment by Correlation
ptimized Warping. Normalization followed by column centering

esulted in better models for this particular data set, while align-
ent turned out to be far from evident due to the high complexity

f and the large differences between the Mallotus samples.
Large differences in the interpretability of the coefficients could

e noticed. From the examined techniques, Stepwise Multiple
inear Regression is least recommended as prediction of the highly
ctive samples showed a large bias and the variable selection was
f few use for our purpose. Principal Component Regression poten-
ially can take large variations uncorrelated to the antioxidant
ctivity into account. However, in our actual case study PCR did

ot result in such bad results. These problems theoretically do not
ccur using Partial Least Squares models. Ordinary PLS gave rise
o difficulties interpreting the regression coefficients because of
he presence of small positive and negative contributions, pos-
ibly caused by orthogonal information of the original data set.
ica Acta 649 (2009) 24–32 31

Uninformative Variables Elimination-PLS reduced the number of
variables taken into account, but one could question the reliabil-
ity of the selection criterion in our study. Moreover, UVE-PLS leads
to different results when repeating the procedure and is not very
user-friendly.

In this study, Orthogonal Projection to Latent Structures was
found to be the better performing technique to indicate the poten-
tial antioxidant active compounds in the Mallotus extracts due
to its simplicity and repeatability, and to remove the orthogonal
information in the original data set. O-PLS resulted in a decreased
model complexity contributing to an improved interpretabil-
ity of the regression coefficients. No changes in the regression
were observed upon removing more then one orthogonal projec-
tion.

The retention time of two peaks indicated as potentially inter-
esting align to the standard compounds mallonanoside A and B.
Further investigation using LC-MS is needed to identify them as
well as other unknown but interesting peaks. In Part II, the results
of LC-MS analyses will be discussed.
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