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Purpose of review

Endocannabinoids (anandamide and

2-arachidonoylgycerol) and related N-acylethanolamines

(N-oleoylethanolamine) exhibit opposite effects in the

control of appetite. The purpose of this review is to highlight

the similarities and differences of three major lipid-signaling

molecules by focusing on their mode of action and the

proteins involved in the control of food intake and energy

metabolism.

Recent findings

Anandamide and 2-arachidonoylglycerol promote food

intake and are the main endogenous ligands of the

cannabinoid receptors. One of them, the cannabinoid

receptor 1, is responsible for the control of food intake and

energy expenditure both at a central and a peripheral level,

affecting numerous anorexigenic and orexigenic mediators

(leptin, neuropeptide Y, ghrelin, orexin, endogenous

opioids, corticotropin-releasing hormone, a-melanocyte

stimulating hormone, cocaine and amphetamine-related

transcript). In the gut, N-oleoylethanolamine plays an

opposite role in food regulation, by interacting with two

molecular targets different from the cannabinoid receptors:

the nuclear receptor peroxisome proliferator-activated

receptor a and a G-protein coupled receptor GPR119.

Summary

Recent findings on the molecular mechanisms underlying

the promotion of food intake or, in contrast, the suppression

of food intake by anandamide and N-oleoylethanolamine,

are summarized. Potential strategies for treating

overweight, metabolic syndrome, and type II diabetes are

briefly outlined.
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Introduction
Fifteen years have elapsed since the discovery by Devane

et al. [1] of N-arachidonoylethanolamine, christened

anandamide, as an endogenous ligand of the cannabinoid

receptors. This discovery led to the elucidation of a whole

signaling system which, in addition to the CB1 and CB2

cannabinoid receptors, comprises a set of enzymes

involved either in the biosynthetic pathways or catabolism,

as well as a putative endocannabinoid transporter protein

[2]. Today, anandamide is part of a variety of cannabinoid

receptor endogenous ligands, together with diverse

N-acylethanolamines, arachidonoyl amino acids, mono-

acylglycerides, and even related ethers which have been

identified in mammals and been shown to bind to the

cannabinoid receptors [3] (Fig. 1). The arrival on the drug

market in Europe (but not in the USA) of the cannabinoid

CB1 receptor antagonist/inverse agonist rimonabant for the

treatment of obese and overweight patients with associ-

ated cardiovascular disease risk factors (type 2 diabetes and

dyslipidemia), highlights the physiological mechanisms by

which endocannabinoids exert their effect on appetite

regulation, feeding and energy expenditure [4�]. The

present review summarizes the recent data describing

these mechanisms, focusing on the role of anandamide,

2-arachidonoylglycerol, and oleoylethanolamide which

seem to be the principal regulators of food intake and

energy metabolism among the endocannabinoids and

related N-acylethanolamines.

Endocannabinoids: to be or not to be
Anandamide is one of the major N-acylethanolamines

studied over the last 15 years. Its isolation from pig

brain and identification as an endogenous ligand of the

cannabinoid receptors launched the quest for detecting its

presence in different biological organisms as well as the

search for the identification of structurally related fatty

acid derivatives in mammals. The abundance and
 reproduction of this article is prohibited.
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Figure 1 Endocannabinoid and related endogenous derivatives

The structures of the endocannabinoids and related N-acylethanolamines and acylglycerolesters are shown. The affinity for the cannabinoid receptors
and peroxisome proliferator activated receptors (PPARs) are also provided. Note that for the PPAR data, functional data (EC50) are more often reported
than affinity data (Ki or IC50). ARA-Ala, N-arachidonoylalanine; ARA-Gly, N-arachidonoylglycine; ARA-Ser, N-arachidonoylserine; DEA, N-docosote-
traenoylethanolamine; HEA, N-homo-g-linolenoylethanolamine; NADA, N-arachidonoyldopamine; 2-OG, 2-oleoylglycerol; PEA, N-palmitoylethanola-
mine; 2-PG, 2-palmitoylgycerol; SEA, N-stearoylethanolamine.
chemical diversity of endogenous compounds sharing with

anandamide the cannabinoid receptors or its synthesizing

and catabolic pathways raised the following question:

what is an endocannabinoid? To be consistent with other

neurotransmission systems, an endocannabinoid in the

strict sense is an endogenous compound able to activate
opyright © Lippincott Williams & Wilkins. Unautho
the endocannabinoid receptors, which are to date the

G-protein-coupled CB1 and CB2 cannabinoid receptors.

There are, however, a large variety of affinities and activi-

ties amongst the so-called ‘endocannabinoids’ (Fig. 1).

Within these restrictive criteria, in this review, anand-

amide and 2-arachidonoylglycerol have been considered
rized reproduction of this article is prohibited.
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as endocannabinoids, whereas N-oleoylethanolamine is

referred to as ‘related N-acylethanolamine’.

Even if the molecular targets mediating their physiological

properties are different, however, related N-acylethanol-

amines and anandamide, and to a lesser extent 2-arachi-

donoylglycerol, share some biosynthetic and catabolic

pathways. The diverse biosynthetic routes leading to

anandamide and N-acylethanolamines are increasingly

being characterized. One of these routes involves a

calcium-dependent N-acyltransferase (NAT) activity

synthesizing the N-acylphosphatidylethanolamine

(NAPE) precursors which, upon transformation by

a NAPE-specific phospholipase D, give rise to the

N- acylethanolamines [5]. Although the enzyme respon-

sible for this NAT activity in the brain awaits identifi-

cation, a recent report [6��] describes the identification of a

calcium-independent NAT enzyme (iNAT) synthesizing

anandamide and N-acylethanolamine precursors highly

expressed in rat testis. The recent generation of NAPE

phospholipase D knockout mice possessing similar

anandamide levels compared with the wild-type mice

suggests that this enzyme may not be the primary enzyme

responsible for anandamide biosynthesis [7��]. Accord-

ingly, additional enzymatic routes have recently been

proposed. For example, a serine hydrolase-catalyzed

double-deacylation of NAPEs, to generate the correspond-

ing glycerophospho-N-acylethanolamines, followed by

a phosphodiesterase-mediated cleavage to generate

N-acylethanolamines, has been described. In this path-

way NAPEs are synthesized by the serine hydrolase

a/b-hydrolase 4 (Abh4) [8�]. Another possible pathway

for anandamide biosynthesis involves the phospholipase

C-catalyzed cleavage of NAPE to generate phospho-

anandamide, which is subsequently dephosphorylated

by phosphatases affording the endocannabinoid [9�].

With respect to 2-arachidonoylglycerol synthesis, two

sn-1 selective diacylglycerol lipases (sn-1-DAGLa and

sn-1-DAGLb) are responsible for the synthesis of

2-arachidonoyl glycerol from sn-1-acyl-2-arachidonoyl-

glycerol precursors [10]. These precursors are synthe-

sized from phosphatidylinositol by phospholipase C.

A suggested alternative route is the hydrolysis of phos-

phatidylinositol in 2-arachidonoyl-lysophosphatidylino-

sitol (lysoPI) by a phospholipase A1. This compound

would, in turn, be hydrolyzed by a lysophospholipase C

resulting in 2-arachidonoylglycerol [11]. Of great relevance

to the topic of this review is the fact that endocannabinoids

and related N-acylethanolamines were detected and quan-

tified in many tissues linked to food intake and control of

energy metabolism, including the brain, liver, gastrointes-

tinal tract, and adipose tissue [12�]. Importantly, the levels

of these lipidic mediators vary with nutritional status (e.g.

anandamide and oleoylethanolamide in the gut) and with

the appearance of obesity (e.g. anandamide and 2-arachi-

donoylglycerol plasma levels in obese patients; see below).
opyright © Lippincott Williams & Wilkins. Unauth
The first step of signal cessation of endocannabinoids

(and related compounds) requires their passage through

the cell membrane to reach their catabolic enzymes. The

question of the presence of an anandamide, as well as

N-acylethanolamines and 2-arachidonylglycerol, uptake

is subject to debate. A decisive step seemed to be

achieved with the identification, using a small azidoaffinity

labeled inhibitor LY2318912, of a high-affinity and satur-

able binding site involved in the transport of endocanna-

binoids [13]. Some close analogues of this molecule, how-

ever, have also been found to inhibit several brain serine

hydrolases, including the enzymes responsible for the

inactivation of endocannabinoids, raising once again the

question of the presence of an active uptake [14,15].

With regards to the endocannabinoid catabolic pathways,

at least four enzymes are known to be involved in

the termination of endocannabinoid signaling, namely

and in order of their cloning, fatty acid amide hydrolase

(nowadays termed FAAH-1) [16], monoacylglycerol lipase

[17,18], N-acylethanolamine acid amidase [19], and a fatty

acid amide hydrolase-2 (FAAH-2) [20�]. Moreover, some

biochemical and pharmacological evidence suggests that

additional hydrolases may be able to regulate endocannabi-

noid tone [21–23]. Among these enzymes, the role of

FAAH-1 in obesity has been investigated both in animal

models and in humans.

Lymphocytes from obese leptin-deficient ob/ob mice

showed decreased FAAH-1 activity and expression [24].

Leptin, through binding to its receptor and via activation of

a STAT-3 signaling pathway, activates a CRE-like binding

site on the FAAH-1 promoter. Such a decrease in FAAH-1

mRNA level was also observed in human obese patients

[25]. Indeed, adipose tissue FAAH-1 mRNA levels were

strongly decreased in obese women patients (average BMI

of 38) compared with lean controls (BMI of 23.5). By

contrast, plasma anandamide and 2-arachidonoylglycerol

levels were found to be increased in obese patients. None

of these parameters were affected by a 5% weight loss.

Interestingly, visceral fat accumulation seems to be a key

event in the dysregulation of the peripheral endocannabi-

noid system. Circulating 2-arachidonoylglycerol levels

are correlated with visceral fat mass, whereas in visceral

adipose tissue CB1 and FAAH expression are negatively

correlated to visceral fat mass [26�].

A single nucleotide polymorphism (cytosine 385!
adenosine) of the FAAH-1 gene has been reported [27].

To investigate a potential relationship between the FAAH

cDNA 385 A/A (P129T) polymorphism and overweight

disorders, a study involving 2667 patients was conducted

and led to a strong correlation between the FAAH

385A/385A genotype and overweight/obesity. This effect

was observed in both Caucasian and African–American

populations but, interestingly, the Pro129Thr mutation
orized reproduction of this article is prohibited.
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was not associated with weight disorders in the Asian

patients. The median BMI was significantly higher in

the FAAH 385A/385A homozygous group than in the

heterozygous and wild-type groups (P< 0.0001) [28]. In

a Danish study involving a population-based cohort of 5801

white patients, however, the Pro129Thr variant of FAAH

was not found to be associated with any fat accumulation

phenotype [29]. Recently, Aberle and coworkers [30�]

observed in obese and dyslipidaemic patients exhibiting

the Pro129Thr FAAH mutation an enhanced decrease in

triglycerides and total cholesterol during a 6-weeks low-fat

diet compared with the wild-type individuals. The reasons

for such differences, however, are yet to be identified and

understood.

The cannabinoid CB1 receptor
The appetite-stimulating properties of cannabis prep-

arations as well as of D9-tetrahydrocannabinol have been

known for a long time (the so-called ‘munchies’), even if

the molecular mechanisms of these actions were only

recently elucidated and continue to be investigated.

Similarly, endocannabinoids such as anandamide and

2-arachidonoylglycerol [31,32] have been reported to

increase food intake and promote weight gain in rats via

the activation of hypothalamic CB1 cannabinoid receptors

[33]. Indeed, mice deficient in this receptor eat less, are

leaner and more resistant to diet-induced obesity com-

pared with their wild-type littermates [34,35]. In a similar

fashion, cannabinoid antagonists/inverse agonists [36–42]

reduce food intake and body weight both in animal models

and in humans. Rimonabant-induced reduction in food

intake is observed in lean as well as in genetically

and diet-induced obese animals [43,44]. Although a rapid

development of tolerance to the rimonabant anorectic

effect has been observed, the effect on body weight was

found to be more sustained over time. Following treatment

discontinuation, however, the body weight returns to

the levels of the untreated animals [45,46]. Besides the
opyright © Lippincott Williams & Wilkins. Unautho

Table 1 Crosstalk of the endocannabinoid system with anorexigen

Mediator Peptides actions

Leptin " anorexigenic and #orexigenic
neuropeptides

NPY " food intake
Ghrelin " food intake via activation of the

growth hormone secretagogue receptor
Orexin Implicated in food intake in satiated rats

Endogenous opioids " food intake

CRH # food intake and affects energy balance
a-MSH # food intake via melanocortin

receptor 4 activation
CART The peptide product of CART is a

tonically active anorectic mediator

The mediator, its described actions on food intake, and reported interaction
2-arachidonoylglycerol; CART, cocaine and amphetamine-related transcript;
releasing hormone; a-MSH, a-melanocyte stimulating hormone.
selectivity of rimonabant, its absence of effect in mice

lacking the CB1 receptor confirmed the CB1-mediated

mechanism of action and the pivotal role of the endocan-

nabinoid system in regulating food intake [34,35,37]. In

fact, besides the effect on body weight, the adjustments of

the glycaemic and lipid parameters as well as reduction in

the visceral fat mass are important hallmarks of rimonabant

administration in rodents [37,47��,48]. In addition, block-

ade of the CB1 cannabinoid receptor was recently shown to

reduce the obesity-associated hepatic steatosis in a rodent

model [47��]. In humans, the results from clinical studies

using rimonabant in treating the metabolic syndrome

(RIO studies) have been published [49–52] and

there was found to be a reduction in body weight, a

decrease in waist circumference (a sign of decreased

visceral fat mass) and improvements in lipid and glucose

profiles. Note that, similarly to the results for rodents, body

weight and waist circumference returned to the levels of

untreated patients following treatment discontinuation

[51]. Extensive reviews on the therapeutic outcome of

rimonabant have recently been published [53–55,56�].

One of the key features is that the weight loss is the

consequence of the blockade of the endocannabinoid

system, both at a central and a peripheral level. Resulting

from activation of the endocannabinoid system at the

central level, there is an enhancement in food intake and

a decrease in satiety. A number of interactions between

the endocannabinoid system and orexigenic and anorexi-

genic neuropeptides have been described that could

explain part of the impact of this system on food intake

[34,36,57] (Table 1 [34–36,58–69]).

At peripheral sites different organs and tissues, expressing

the CB1 receptor, are involved in controlling energy

homeostasis: white and brown adipose tissues [12�,36,

46,70�,71], the liver [47��,72], the gut [73], the pancreas

[74–77], the brain [31], and skeletal muscles [78��,79�].
rized reproduction of this article is prohibited.

ic and orexigenic mediators

Link between the eCB system and the peptide Reference

Leptin reduces AEA and 2-AG hypothalamic levels [34,35]

Blocking the CB1 receptor increases leptin levels
AEA increases hypothalamic NPY release [34,58]
Blocking the CB1 receptor reduces plasmatic

ghrelin levels in fasted rats.
[59–61]

CB1 and orexin 1 receptor heterodimerize [62–64]
CB1 receptor potentiates the orexin 1 receptor
Cannabinoid and opioid ligands have synergistic

effects on food intake
[65,66]

CB1 and CRH are coexpressed in the hypothalamus [36,67]
Cannabinoid and melanocortin systems have

synergistic effects on food intake
[68]

CART is a downstram mediator of AEA
orexigenic effects

[36,69]

s with the endocannabinoid system are listed. AEA, anandamide; 2-AG,
CB1 cannabinoid receptor 1; NPY, neuropeptide Y; CRH, corticotropin-
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Figure 2 Overview of the endocannabinoid dysregulation in obesity

The endocannabinoid system is dysregulated in
obese situations as described by the labels on the left.
Obesity is characterized by an overall increase in
endocannabinoid levels at central and peripheral sites
(including circulating plasmatic levels). Upregulation
of cannabinoid receptor CB1 expression was also
described in animal models in the liver [72], skeletal
muscle [78��], and visceral fat [46,80]. Note that in
humans decreased CB1 receptor and fatty acid amide
hydrolase (FAAH) expression was found in fat tissues
[25,26�]. On the right side of the panel are given the
effects on food intake and energy metabolism of
activation of the endocannabinoid system. Both
orexigenic – activation of the CB1 receptor and
anandamide (AEA) or 2-arachidonoylglycerol (2-AG)
increased levels – and anorexigenic – action of
oleoylethanolamide (OEA) through peroxisome
proliferator activated receptor a and possibly GPR119
– pathways are shown. SREBP1c, sterol regulatory
element binding protein 1c.
During obesity, the peripheral endocannabinoid system is

overactive (Fig. 2) [25,26�,46,72,78��,80]. The observed

alterations or modifications during obesity have been

recently reviewed by Matias and Di Marzo [81].

The nuclear peroxisome proliferator-activated
receptor a
Oleoylethanolamide, a mono cis-unsaturated and shorter

analogue of anandamide, is an endogenous fatty acid

derivative involved in feeding and body mass regulation.

In food-deprived rats (24 h) oleoylethanolamide sup-

pressed food intake upon refeeding, an effect shared with

N-palmitoylethanolamine but not with anandamide or
opyright © Lippincott Williams & Wilkins. Unauth
oleic acid. Unlike anandamide, oleoylethanolamide

does not bind to cannabinoid receptors [82], but like the

endocannabinoid, it is metabolized by fatty acid

amide hydrolase-1 [83]. Mice deficient for FAAH-1 exhibit

a 40-fold increase in brain oleoylethanolamide levels [84].

The anorectic effect of oleoylethanolamide has a periph-

eral origin, since no effect on food intake was observed

after direct administration of oleoylethanolamide in brain

ventricles or following destruction of peripheral sensory

fibers by capsaicin [85]. Levels of oleoylethanolamide in

the intestine vary in relation to food consumption, since

they are reduced during fasting and rise after refeeding; in

other words, oleoylethanolamide levels give the opposite
orized reproduction of this article is prohibited.
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pattern to that of anandamide level variations in response

to food intake [73,86��,87�]. Oral administration of

oleoylethanolamide gives a similar picture [88,89]. The

peroxisome proliferator-activated receptor a (PPARa) is

one of the molecular targets of oleoylethanolamide [90,91],

mediating satiety, body weight maintenance, and lipolysis.

This nuclear receptor, involved in the regulation of lipid

metabolism, has become, together with other PPARs an

attractive drug target [92] to treat dyslipidemia, diabetes,

obesity and metabolic syndrome [93,94]. They are all

ligand-activated transcription factors of the nuclear

hormone receptor superfamily, sharing a high degree of

structural homology, particularly in the DNA-binding

domain and ligand and cofactor-binding domain, and act

as lipid sensors [95]. Low-affinity PPARa activators such as

fibrates are hypolipidemic agents that have been used

as therapeutic agents for 40 years [96]. The interrelations

between cannabinoids and PPARs were briefly reviewed

by Sun et al. [97]; not only oleoylethanolamide but

also N-palmitoylethanolamine, anandamide, virodhamine

and noladin ether, as well as synthetic unrelated cannabi-

noid agonists such as WIN-55,212-2, are able to activate, at

least partially, mouse PPAR-a (Fig. 1). In addition, other
opyright © Lippincott Williams & Wilkins. Unautho

Figure 3 Recently described ligands for the peroxisome proliferato

The oxadiazoles PSN375963, PSN 632408, and AR231453 are GPR1
PPARa activators [107,108�].
PPARs such as PPARg are the targets of both anandamide

and 2-arachidonoylglycerol [98] but also of D9-tetrahydro-

cannabinol [99,100]. A combination therapy with rimona-

bant, a CB1 cannabinoid antagonist/inverse agonist, and

oleoylethanolamide has been reported to enhance the

feeding suppression effect both in normal rats and in

genetically obese Zucker rats, resulting in body weight

reduction. The serum and liver lipid levels were reduced

by the treatment. A parallel amelioration in the hepatic

steatosis, through the control of the gene expression of

stearoyl coenzyme A desaturase 1, a key enzyme in

lipid biosynthesis and triglycerides secretion, was also

obtained [101�], an effect similar to what was described

for N-stearoylethanolamine [102]. The effects of

oleoylethanolamide on ghrelin [59] and on fatty acid

translocase (FAT/CD36), an integral membrane protein

facilitating the free fatty acid uptake into cells [103], have

also been described, although definitive answers for the

responsible mechanisms remain to be defined.

The GPR119 receptor
GPR119, an orphan Ga(s) protein coupled receptor

known to bind phospholipids [104], has recently been
rized reproduction of this article is prohibited.

r activated receptor a (PPARa) and GPR119 receptor

19 ligands [105��,106��]. The N-oleoylethanolamine derivatives are
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deorphanized. Indeed, N-oleoylethanolamide binds and

activates GPR119. In addition, small molecules showing

hypophagic properties like PSN375963 and PSN632408

(Fig. 3 [105��,106��,107,108�]) also act as GPR119 ago-

nists, without affecting PPARa and transient receptor

potential vanilloid type 1 (TRPV1) receptors, raising the

possibility of an alternative mechanism explaining the

satiety mediated by N-oleoylethanolamide A [105��].

The expression and distribution of GPR119 in rodents

is present in some abundance in the gastrointestinal

tract, brain and pancreas. In this latter organ, GPR119

seems to be localized in the insulin-producing b-cells of

the pancreatic islets where its mRNA levels were elev-

ated in obese mice compared with lean animals [109].

Recently, Chu et al. [106��] suggested that when using

GPR119-deficient mice – which possess a diabetic

phenotype – GPR119 functions as a glucose-dependent

insulinotropic receptor and may be suitable for the devel-

opment of potent, orally active, small-molecule antihy-

perglycaemic agents. Thus, selective GPR119 agonists

would represent, alone or in combination with PPARa

agonists or CB1 receptor antagonists, valuable therapeutic

agents for the treatment of obesity and metabolic

syndrome.

Although two molecular targets – PPARa and GPR119,

which provide a rationale for the N-oleoylethanolamide

effects on food intake – have been identified, less is

known about this N-acylethanolamine catabolism in the

gastrointestinal tract. Indeed, the administration of a

potent FAAH-1 inhibitor, URB597, did not potentiate

the oleoylethanolamide-induced hypophagia [110]. In

fact, inhibition of FAAH-1 in the rat failed to affect the

intestinal levels of the N-acylethanolamines anandamide,

N-palmitoylethanolamine and N-oleoylethanolamide. In

addition oleoylethanolamide and N-palmitoylethanol-

amine levels in the intestine were only slightly enhanced

in FAAH-1–/– mice, and to a far lesser extent when

compared with that observed in the brain and liver,

suggesting that FAAH-1 does not play a key role in

N-oleoylethanolamide-induced hypophagia. Further evi-

dence in this regard is the fact that oleoylethanolamide

produced a similar anorectic effect in wild-type and

FAAH-1-deficient mice, suggesting that oleoylethanol-

amide metabolism in the intestine results from another

enzyme. Candidate enzymes responsible for this activity

are N-acylethanolamine acid amidase, which hydrolyses

oleoylethanolamide and is expressed in the gastrointes-

tinal tract [19], as well as ceramidases, as recently

suggested [111]. These data should open the way for

further studies aiming at characterizing oleoylethanol-

amide hydrolysis in the gastrointestinal tract. We believe

that inhibitors of oleoylethanolamide metabolism acting

on the metabolism of oleoylethanolamide in the gastro-

intestinal tract could provide useful tools to regulate food

intake.
opyright © Lippincott Williams & Wilkins. Unauth
Conclusion
All these recent findings are cause for considerable excite-

ment in the drug discovery field. Antagonists of the CB1

cannabinoid receptors are now well developed, as testified

by the number of compounds in clinical trials [112]. Less is

known on the potential of mimicking oleoylethanolamide

actions by activating its targets, namely PPARa and

GPR119. Furthermore, many patents and papers reported

the search for mixed PPARa–g agonists or the use of

combinations of the two agonists [113,114]. Analogues of

oleoylethanolamide, including N-octadecyl-N’-propylsul-

famide (Fig. 3) have just been released and elicit both

activation of PPARa and feeding suppressant properties

[107]. It is important to note that one of the compounds,

N-octadecylsulfamide, mimics the effects of oleoyletha-

nolamide on body weight but fails to activate PPARa.

High throughput screening on GPR119 revealed new

synthetic ligands such as PSN375963 and PSN632408

with hypophagic properties [105��]. Another recent exam-

ple of a new GPR119 selective agonist is AR231453, a

molecule that displays an enhanced glucose-dependent

insulin release in vivo and improved oral glucose tolerance

[106��].
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