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Background: Active efflux is a common mechanism of resistance to fluoroquinolones in Streptococcus
pneumoniae. Two efflux systems have been described so far in this species: PmrA, a member of the major facil-
itator superfamily; and the two ABC transporters PatA and PatB. We studied the inducibility of expression of
pmrA, patA and patB by using subinhibitory concentrations of fluoroguinolones.

Methods: A wild-type susceptible strain, two clinical isolates resistant to fluoroquinolones and two efflux
mutants selected in vitro after exposure to ciprofloxacin were studied. MICs were determined for these
strains and their mutants in which pmrA, patA or patB had been disrupted. Gene expression was determined
after exposure to half the MIC of norfloxacin, ciprofloxacin, levofloxacin, moxifloxacin or gemifloxacin and quan-
tified by real-time PCR.

Results: Increased MICs of norfloxacin, ciprofloxacin and levofloxacin (to a lesser extent) and increased
expression of patA and patB were seen for all resistant strains; these were reduced in patA or patB disruptants
or in the presence of reserpine. Exposure to any of the five fluoroquinolones caused a reversible increase in
expression of patA and patB, but not of pmrA. Mitomycin C, an inducer of the competence system in
S. pneumoniae, also induced patA and patB expression in the two strains tested.

Conclusion: The ABC efflux system PatA/PatB is induced upon exposure to subinhibitory concentrations of fluoro-
quinolones, whether substrates of the transporter or not. This effect, possibly resulting from the activation of

the competence pathway, may contribute to resistance.
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Introduction

Streptococcus pneumoniae is a leading cause of respiratory tract
infections, including community-acquired pneumonia (CAP)."?
The so-called respiratory fluoroquinolones (levofloxacin, moxi-
floxacin and gemifloxacin)® are active in the treatment of
CAP.%? However, the use of levofloxacin has been associated
with a decrease in bacterial susceptibility and subsequent clinical
failures.* High-level fluoroquinolone resistance is mainly due to
mutations in structural genes for the GyrA subunit of DNA
gyrase and for the ParC subunit of topoisomerase IV.°
However, there is increasing evidence that active efflux can
play an important role in decreasing the susceptibility of the

isolates,®~® with ciprofloxacin and norfloxacin often being used
as reporter antibiotics in this context.

PmrA, a member of the major facilitator superfamily (MFS),
was the first efflux pump shown to confer resistance to norflox-
acin and ciprofloxacin.® More recently, an efflux system belong-
ing to the ATP binding cassette (ABC) superfamily and
composed of two transporters encoded by patA (SP2075) and
patB (SP2073) was identified.'®!? Expression of these genes
was increased in strains with decreased susceptibility to fluoro-
quinolones,”*#1* and induced by ciprofloxacin or norfloxa-
cin.'® These studies, carried out with a reference strain and
derivative mutants, were limited to fluoroquinolones that are
substrates for this efflux system. In the present study, we have
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compared induction of expression of pmrA, patA and patB by five
fluoroquinolones (putative good or poor substrates) in various
strains including clinical isolates. Because fluoroquinolones and
the DNA-damaging agent mitomycin C can induce a competence
pathway and chromosomal transformation in S. pneumoniae,*>*®
we examined whether mitomycin C was able to induce patA and
patB expression as part of a global stress response. In a nutshell,
we report that: (i) all fluoroquinolones can induce patA and patB
expression in a concentration-dependent manner; (ii) the extent
of overexpression depends on the strain rather than on the
inducer; and (i) mitomycin C is able to trigger overexpression
of patA and patB, confirming that this efflux system is part of a
general stress response related to DNA damage.*

Materials and methods

Bacterial strains and growth conditions

The five strains studied were: (i) the reference S. pneumoniae ATCC 49619;
(i) two laboratory mutants (SP334, derived from S. pneumoniae ATCC
49619, and SP335, derived from the clinical isolate SP32, selected after
13 days of exposure to ciprofloxacin'?); and (i) two clinical isolates
(SP295 and SP13) (see Table 1). Cultures were performed at 37°C in a
5% CO, atmosphere using Todd-Hewitt broth supplemented with 1%
yeast extract (THY; BD, Franklin Lakes, NJ, USA) or Mueller-Hinton agar
supplemented with 5% defibrinated sheep blood (International Medical
Products, Brussels, Belgium).

Determination of MICs

MICs of fluoroquinolones and of ethidium bromide and acriflavine (two
well-known substrates for efflux pumps) were determined by the serial
2-fold macrodilution method in Mueller-Hinton agar supplemented with
5% defibrinated horse blood, with an inoculum of ~10° bacteria per
spot.'>17 The efflux inhibitor reserpine was used at a final concentration
of 20 mg/L.*®

DNA techniques

Chromosomal DNA was purified with the DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany). Plasmid DNA was prepared using the
Plasmid Midi Preps Kit (Qiagen) and transformed into Escherichia coli.*®
Restriction enzymes and T4 DNA ligase were obtained from New
England Biolabs (Ipswich, MA, USA). Blunt-ending of restricted plasmid
DNA was performed by the addition of 1U of Klenow enzyme (New
England Biolabs) and 33 uM deoxynucleoside triphosphates to the reac-
tion mixture at the end of enzymatic digestion. Restriction fragments
were purified from agarose gels with the QIAquick Gel Extraction Kit
(Qiagen). PCR amplifications were performed according to the manufac-
turer’s protocol for BIOTAQ Red DNA polymerase (Gentaur, Kampenhout,
Belgium). The sequences of the primers used are shown in Table S1, avail-
able as Supplementary data at JAC Online (http:/jac.oxfordjournals.org/).

Quantitative real-time PCR

S. pneumoniae was grown overnight at 37°C in a 5% CO, atmosphere on
Mueller-Hinton agar supplemented with 5% defibrinated sheep blood.
Bacteria were resuspended in 15 mL of THY medium supplemented or
not with inducers at an optical density (620 nm) of 0.2-0.4. For induc-
tion, bacteria were grown for up to 6 h at 37°C in 5% CO,. For exper-
iments examining the reversal of induction, bacteria were harvested by
centrifugation (3000 g for 10 min) after 4 h of culture in the presence
of antibiotic at half the MIC, washed once at room temperature in drug-

free medium and centrifuged, and the pellet was then resuspended in
THY drug-free medium and cultured for up to 5 h. Bacteria were har-
vested by centrifugation (5000 g for 5 min at 4°C) and the pellets were
frozen and kept at —80°C for at least 30 min before nucleic acid extrac-
tion. Total RNA extraction and reverse transcription were performed as
previously described.’? Real-time PCR was performed in an iQ cycler
(Bio-Rad Laboratories, Hercules, CA, USA) in 25 L reaction mixtures con-
taining 12.5 pL of iQ SYBR Green Supermix (2x), 400 nM of forward and
reverse primers and 5 pL of cDNA in RNase/DNase-free water. The rpoD
and proC genes were used as references to normalize transcript levels,
as specified by PrimerDesign (Southampton, UK).

Inactivation of patA, patB and pmrA genes

To inactivate patA or patB, the strains were transformed with genomic
DNA of M246 or M240 strains, which have a magellan2 minitransposon
inserted in either patA or patB.*> Transformants were selected on
Mueller-Hinton agar containing 5% defibrinated sheep blood sup-
plemented with 100 mg/L spectinomycin. Gene inactivation was verified
by PCR.™ To inactivate pmrA, a 1 kb BamHI-KpnI PCR fragment, amplified
with the PmrARec-F and PmrARec-R primers (Table S1) and carrying
the pmrA gene, was cloned in BamHI-Kpnl-restricted pUC18.° The
plasmid was then cleaved in the insert by Clal and blunt-ended with
Klenow enzyme. The aad9 gene of magellan2 conferring resistance to
spectinomycin’’ was amplified by PCR with the Spec-1 and Spec-2
primers (Table S1), ligated with the linearized plasmid to generate
pUC18QpmrA:spt and transformed into S. pneumoniae strain R6. Inacti-
vation of pmrA was confirmed by PCR using the PmrA-Delta-F and
PmrA-Delta-R primers.

Quinolone resistance-determining region (QRDR)
sequencing

The QRDRs of gyrA, parC and parE were amplified and sequenced using
the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,

Foster City, CA, USA) and a Genetic Analyzer 3100 (Applied Biosystems)
as previously described.’?

Antibiotics, other substrates and pump inhibitor

Levofloxacin, moxifloxacin and gemifloxacin were obtained as microbio-
logical standards from Aventis Pharma (Antony, France), Bayer Health-
Care (Leverkusen, Germany) and LG Life Sciences (Seoul, Korea),
respectively. Other antibiotics, substrates or inducers were obtained as
pure substances from Sigma-Aldrich (St Louis, MO, USA).

Results

Antibiotic susceptibility of the strains

Table 1 summarizes the MICs of the five fluoroquinolones and of
acriflavine and ethidium bromide, determined in the absence or
presence of reserpine. The MICs of norfloxacin, ciprofloxacin, acri-
flavine and ethidium bromide were significantly (=2 dilutions; 1
dilution for acriflavin and SP334) higher for SP334, SP335,
SP295 and SP13 than for S. pneumoniae ATCC 49619. The MICs
of levofloxacin and gemifloxacin were significantly higher in
SP334, SP335 and SP13 [reaching or exceeding the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) clini-
cal resistance breakpoint for levofloxacin]. Moxifloxacin MIC was
increased by two dilutions only against SP335 (but remained
below the EUCAST resistance breakpoint).
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Table 1. Susceptibility of S. pneumoniae to fluoroquinolones and substrates of efflux pumps in the absence (—R) or presence (+R) of reserpine (20 mg/L)

MIC (mg/L) of:
norfloxacin ciprofloxacin levofloxacin moxifloxacin gemifloxacin
ethidium
acriflavine bromide
Strains Relevant characteristics® Mutations in QRDR Reference or source
-R +R -R +R -R +R -R +R -R +R -R +R -R +R
ATCC 49619 wild-type none 4 2 0.5 0.5 0.5 0.5 0.125 0.125 0.031 0.031 2 1 0.5 0.125 LGC Standards
ATCC 49619patA ATCC 49619 patAzmagellan2, SPT® none 4 2 0.5 0.5 0.5 0.5 0.125 0.125 0.031 0.016 1 0.5 0.25 0.125 this study
ATCC 49619patB ATCC 49619 patB:magellan2, SPT? none 2 2 0.5 0.5 0.5 0.5 0.125 0.125 0.031 0.031 1 1 0.25 0.125 this study
ATCC 49619pmrA ATCC 49619 pmrA:zmagellan2, SPT® none 4 2 1 0.5 0.5 0.5 0.125 0.125 0.031 0.031 4 1 1 0.125 this study
SP334 ATCC 49619 after 13 days of exposure none 32 4 4 0.5 2 1 0.25 0.25 0.125 0.031 4 1 4 0.125 12
to ciprofloxacin, CIPR
SP334patA SP334 patA:zmagellan2, SPT® none 4 4 1 0.5 1 1 0.125 0.125 0.063 0.031 1 1 0.25 0.125 this study
SP334patB SP334 patB:magellan2, SPT® none 8 4 1 1 1 1 0.25 0.25 0.063 0.063 1 1 0.125 0.125 this study
SP334pmrA SP334 pmrA:aad9, SPT® none 32 4 4 0.5 1 0.5 0.25 0.25 0.125 0.063 4 0.5 2 0.125 this study
SP335 clinical strain SP32 after 13 days of ParE (Ile460Val) 64 8 32 2 4 2 0.5 0.25 0.5 0.125 16 1 8 0.25 12
exposure to ciprofloxacin, CIP®
SP335patA SP335 patA:zmagellan2, SPT® ParE (Ile460Val) 4 4 1 0.5 1 1 0.125 0.125 0.031 0.031 1 1 0.25 0.125 this study
SP335patB SP335 patB:magellan2, SPT® Park (Ile460Val) 4 4 1 0.5 1 1 0.125 0.125 0.031 0.031 1 1 0.25 0.25 this study
SP335pmrA SP335 pmrA:aad9, SPT® ParE (Ile460Val) 64 4 8 0.5 1 0.5 0.25 0.125 0.063 0.016 8 0.5 8 0.125 this study
SP295 clinical isolate® none 16 2 2 0.5 1 0.5 0.125 0.125 0.063 0.031 16 1 16 0.25 this study
SP295patA SP295 patA:magellan2, SPT® none 2 2 0.5 0.5 0.5 0.5 0.125 0.125 0.031 0.031 1 1 0.25 0.25 this study
SP295patB SP295 patB:magellan2, SPT® none 2 2 0.5 0.5 0.5 0.5 0.125 0.125 0.016 0.016 1 1 0.25 0.25 this study
SP295pmrA SP295 pmrA:aad9, SPT® none 8 4 1 0.5 1 0.5 0.25 0.125 0.063 0.031 8 1 4 0.25 this study
SP13 clinical isolate® ParC (Ser79Phe, Lys137Asn); 256 16 16 4 2 1 0.25 0.25 0.25 0.063 16 1 16 0.25 this study
Park (Ile460Val)
SP13patA SP13 patA:magellan2, SPTR ParC (Ser79Phe, Lys137Asn); 16 16 2 1 1 1 0.25 0.25 0.063 0.063 1 0.5 0.25 0.125 this study
Park (Ile460Val)
SP13patB SP13 patB:magellan2, SPT® ParC (Ser79Phe, Lys137Asn); 16 16 2 2 2 1 0.25 0.25 0.063 0.063 2 1 0.25 0.25 this study
ParE (Ile460Val)
SP13pmrA SP13 pmrA:aad9, SPT® ParC (Ser79Phe, Lys137Asn); 128 16 16 2 2 1 0.5 0.25 0.125 0.063 8 0.5 8 0.25 this study

Park (Ile460Val)

EUCAST breakpoints for resistance: ciprofloxacin and levofloxacin, >2 mg/L; and moxifloxacin, >0.5 mg/L (no values for norfloxacin and gemifloxacin). Figures in bold indicate MICs at

least two dilutions higher than those of wild-type S. pneumoniae ATCC 49619.
9CIPR resistance to ciprofloxacin; SPTR resistance to spectinomycin.

®Isolated from blood culture (Cliniques Universitaires St Luc, Brussels).
“Isolated from expectoration (Universitair Ziekenhuis Brussel, Brussels).
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In the presence of reserpine, the MICs of acriflavine and ethi-
dium bromide were similar to those for the wild-type strain,
suggesting an efflux mechanism in the four strains. For fluoroqui-
nolones, restoration of wild-type MICs by reserpine was complete
for SP334 and SP295, but only partial for SP335 and SP13, which
have mutations in the QRDR (Table 1).

Role of PmrA, PatA and PatB in antibiotic resistance

The expression of pmrA, patA and patB was quantified by real-
time PCR in all strains (Figure 1). As compared with S. pneumo-
niae ATCC 49619, the four resistant strains overexpressed patA
and patB to levels ranging from 4.4-fold for patA in SP334 to
13.6-fold for patB in SP13. In contrast, only SP335 and SP13
showed modest overexpression of pmrA.

Every gene was inactivated in each of the five strains, and the
MICs for the disruptants were determined (Table 1). For all
strains, inactivation of either patA or patB reduced the MIC of
acriflavine and ethidium bromide to a value similar to that for
S. pneumoniae ATCC 49619 in the presence of reserpine. Likewise,
the MICs of fluoroquinolones for patA- or patB-inactivated strains
were reduced (+1 dilution) to those measured for the corre-
sponding parental strain in the presence of reserpine (or even
lower for SP335). In contrast, inactivation of pmrA did not
cause a marked decrease in MICs (0 to 1 dilution).

Induction of patA, patB or pmrA expression by
fluoroquinolones

The expression of these genes was then measured in bacteria
grown for 4 h in the presence of fluoroquinolones at half their
MIC (preliminary experiments with ciprofloxacin showed that
this concentration caused the maximal effect; see Figure S1,
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Figure 1. Expression levels of patA, patB and pmrA in non-induced
S. pneumoniae. Data are expressed as the ratio to the value in
S. pneumoniae ATCC 49619. Values are the means+SEM of duplicates
from five independent experiments. *P<<0.05 (one-way ANOVA with
Dunnett’s post hoc test for comparison with S. pneumoniae ATCC 49619).

available as Supplementary data at JAC Online http:/jac.
oxfordjournals.org). All fluoroquinolones were potent inducers
of patA and patB in strains SP335 and SP295, but showed a
lower effect in strains ATCC 49619 and SP334 and no effect for
norfloxacin and levofloxacin in strain SP13 (Figure 2). In contrast,
the expression of pmrA remained unaffected or even decreased
upon exposure to fluoroquinolones. Specificity of induction was
tested with tetracycline and chloramphenicol under the same
conditions, but no change in the expression of patA, patB or
pmrA was observed (data not shown).

Kinetics of induction

To follow the kinetics of induction of patA and patB and the time
needed to revert to basal level, strains ATCC 49619 and SP335
were used as they showed a low and high basal level of patA/
patB expression, respectively. Ciprofloxacin and moxifloxacin
were selected as substrate and non-substrate (Figure 3). In
both strains, a lag phase of ~30-40 min was observed during
which no change in expression level was observed, followed by
increased expression levels over time. Reduction in expression
was detected as soon as the drugs were removed and reversal
to original pre-exposure levels was obtained after 3-4 h. To
test if changes in patA and patB expression over time did not
result from growth variations, expression of the genes under
non-inducing conditions in bacteria from the exponential to the
stationary phase was measured and no differences were seen.
Conversely, there was no change in optical density over the 6 h
of induction, indicating absence of significant growth over the
time frame of the experiment (see Figure S2, available as Sup-
plementary data at JAC Online http:/jac.oxfordjournals.org/).

Induction of patA/patB and of the competence regulon
by mitomycin C

DNA-damaging agents or antibiotics are capable of inducing
the SOS response,”? or a competence pathway in bacteria
devoid of an SOS system, such as S. pneumoniae.'*'?3 We
therefore examined whether mitomycin C, a DNA-damaging
agent known to induce competence in S. pneumoniae,*>'® was
also able to induce expression of patA and patB. In parallel, we
quantified the expression levels of two genes involved in compe-
tence via the com regulon,'® namely recA®* and ssbB.?>*® The
expression of these genes upon induction by ciprofloxacin or
mitomycin C was largely parallel to that of patA and patB, with
a correlation coefficient of 0.879 and 0.897 for ssbB and recA
versus patA and patB, respectively (see Figure S3, available as
Supplementary data at JAC Online http:/jac.oxfordjournals.org/).

Discussion

Two important observations were made. Our study shows that
PatA and PatB play a major role in fluoroquinolone resistance
in the two clinical isolates and the two in vitro mutants examined
here, while PmrA does not, confirming the data of Piddock et al.?’
and Garvey and Piddock.® Inactivation of either patA or patB
restored full susceptibility to ethidium bromide or acriflavine in
the four strains, or to fluoroquinolones in those strains that did
not harbour mutations in the genes encoding the target proteins.
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Figure 2. Induction of pmrA, patA and patB expression in S. pneumoniae exposed for 4 h to half the MIC of various fluoroquinolones. Data are
presented as ratios of expression measured under induced and non-induced conditions. Values are the means+SEM of duplicates from two
independent experiments. *P<0.05 (one-way ANOVA with Dunnett’s post hoc test for comparison with the non-induced condition). NOR,
norfloxacin; CIP, ciprofloxacin; LVX, levofloxacin; MXF, moxifloxacin; GMF, gemifloxacin.
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Figure 3. Kinetics of induction and deinduction of patA and patB expression by ciprofloxacin and moxifloxacin in S. pneumoniae ATCC 49619 (top) and
SP335 (bottom). Bacteria were induced by exposure to half the MIC of ciprofloxacin or moxifloxacin over 6 h. For reversion, bacteria induced for 4 h
were harvested and regrown in broth without antibiotic for 5 h. Data are presented as ratios of patA (left) or patB (right) expression measured under
induced and non-induced conditions for each strain as a percentage of the value at 4 h (staring point of reversion, as indicated by the arrows). Values
are the means + SEM of duplicates from two independent experiments. CIP, ciprofloxacin; MXF, moxifloxacin.
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In contrast, pmrA inactivation had only a marginal effect, in
agreement with other studies.”'"?®

First, resistance mediated by PatA/PatB did not affect all fluoro-
quinolones to the same extent, with norfloxacin being the most
affected, followed by ciprofloxacin, gemifloxacin, levofloxacin
and finally moxifloxacin. This is in agreement with a previous
ranking established for fluoroguinolone susceptibility to efflux
in S. pneumoniae®?%3° or in S. aureus,®' suggesting that hydro-
philic molecules are better substrates. We extend here this obser-
vation to other fluoroquinolones, but show that moxifloxacin, the
most lipophilic molecule among those tested here, was little
affected by the overexpression of PatA/PatB. Interestingly this
ranking seems to apply to efflux pumps of the ABC superfamily
(like PatA/PatB) as well as to those of the MFS superfamily
(such as NorA in S. aureus). This observation may suggest that
common molecular or physicochemical determinants in sub-
strates are recognized by non-phylogenetically related
transporters.

Second, inactivation of either patA or patB is sufficient to
restore full susceptibility to fluoroquinolones and no phenotypic
discrepancies are observed between patA and patB knockouts
with respect to fluoroquinolone, acriflavine or ethidium suscepti-
bility. Together with the facts that (i) homologues of PatA
and PatB appear as pairs of proteins working together'® and (ii)
predictions of topologies for PatA and PatB propose four to
seven transmembrane segments for each of these proteins
[using either TMPRED (http:/www.ch.embnet.org/software/
TMPRED form.html) or SOSUI (http:/bp.nuap.nagoya-u.ac.jp/
sosui)], these observations suggest that the two proteins may
constitute a heterodimeric ABC-type multidrug transporter'*=?
or, at least, a need to interact to confer fluoroquinolone
resistance.'®

When bacteria are exposed to antibiotics, dyes, solvents or
detergents, they can adapt by inducing the expression of efflux
systems.**3* It has been shown that patA and patB expression
of a wild-type S. pneumoniae and of an in vitro resistant
mutant thereof is inducible upon exposure to norfloxacin or
ciprofloxacin.*®** This observation is extended here by showing
that induction is obtained (i) for all fluorogquinolones tested,
whether substrates of PatA/PatB or not, and (i) not only in a wild-
type strain, but also in in vitro mutants and in clinical isolates
overexpressing patA and patB under non-inducing conditions.
Increase in expression develops rapidly, irrespective of the fluor-
oquinolone used, and is fully reversible. Because induction seems
specific to fluoroquinolones, is observed even in strains with pre-
existing high basal efflux expression and is observed with indu-
cers that are or are not substrates, it is tempting to speculate
that overexpression is the consequence of a change in global
regulatory responses induced by fluoroquinolones.

Regulation of ABC-type efflux transporters involves local requ-
lators, repressors or activators, as well as global transcriptional
regulators.®?~3* Yet the regulators of patA and patB expression
are unknown. A microarray analysis showed that exposure of
S. pneumoniae to ciprofloxacin induces the expression of genes
involved in the competence pathway, mismatch repair system
or replication.’* We found here a coexpression of patA and
patB and of two genes of the competence pathway!>'®?3
upon exposure to ciprofloxacin or the DNA-damaging agent
mitomycin C. This strongly suggests that the overexpression of
patA and patB observed upon induction by fluoroquinolones is

not only dependent upon local regulators, but is also part of a
global response related to the stress imposed by their interaction
with DNA.?%3>

The data presented here may have important implications for
the clinical use of fluoroquinolones. Induction of patA and patB
expression by subinhibitory concentrations of any fluoroquino-
lone may contribute to increased levels of resistance to the mol-
ecules of the class that are substrates for efflux. As MICs may
remain below or at the limit of the susceptibility breakpoint for
the more potent fluoroquinolones, this highlights the usefulness
of antibiotics like norfloxacin or ciprofloxacin in laboratory
screens and/or for identifying resistance mechanisms at the mol-
ecular level. This inducible character also compromises the
potential importance of efflux inhibitors that would act as com-
petitive substrates, as illustrated by the cross-resistance to reser-
pine observed in a strain overexpressing patA.*?
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Supplementary data

Table S1. Primers used in this study

Primers Sequence (5°-3”) (endonuclease)” Source or
reference
Gene expression
rpoD-F CAGGTAGCAGAATTTATCCGTAATC PrimerDesign Ltd”
rpoD-R CCCATCAGCGTCCAAGGTA PrimerDesign Ltd”
proC-F TTATCCCAAGTCAACACCGAAT PrimerDesign Ltd"
proC-R GCAATTAGGAGACAAGGCATAAC PrimerDesign Ltd"
pmrA-S TCCAGTATGGGCTTTTCCAG !
pmrA-AS CCAATCCAAAGAGGAAACGA !
patA-F TCCTGATGACAGGCTTGATG This study
patA-R TGCGAGGACAACATTGAGTC This study
patB-F ATGGCAAAGCCTATCAGGAA This study
patB-R AGGATATCGCCATCTTGTCG This study
recA-2-F CTCATCATACGAGCCTGCAA This study
recA-2-R GTCTTGAGATTGCGGGAAAA This study
ssbB-2-F AAAGACCAAAACGGTGAACG This study
ssbB-2-R TACGCAATTCTCCATCAACG This study
Sequencing
PNC10 TGGGTTGAAGCCGGTTCA 2
PNCI11 CAAGACCGTTGGTTCTTTC 2
SPPARE7 CCAATCTAAGAATCCTG 3
SPPARES GCAATATAGACATGACC 3
gyrA-S CCTGTTCACCGTCGCATTCT !
gyrA-AS AGTTGCTCCATTAACCA !
Gene inactivation
PmrARec-F CTCGGATCCGCATTGCCTGGTTTGGTAAT (BamHI) This study
PmrARec-R CTCGGTACCCACAAAGGCTTGTCGCATAA (Kpnl) This study
CTCGCGGCCGCCCCCGGTCTGACACATAGAT .
Spec-1 (Notl) This study
Spec-2 CTCAGATCTTCCCCGGATCTAACAAAGAA (Bglll) This study
PmrA-Delta-F CCTTCTTGAGGGAGGTAGGC This study
PmrA-Delta-R TGGATTGGTTTTTGGTTGGT This study

* Restriction sites introduced in primers are underlined and the corresponding endonuclease indicated in
parentheses. Amplification reactions were conducted at 61°C, 50°C, 54°C for gene inactivation,
sequencing experiments and gene expression experiments, respectively.

® primers designed by this company (http://www.primerdesign.co.uk/research_with_integrity.html)

" Avrain L, Garvey M, Mesaros N ez al. Selection of quinolone resistance in Streptococcus pneumoniae
exposed in vitro to subinhibitory drug concentrations. J. Antimicrobial Chemother. 2007; 60, 965-72.

? Janoir C, Zeller V, Kitzis MD et al. High-level fluoroquinolone resistance in Streptococcus pneumoniae
requires mutations in parC and gyrA. Antimicrob.Agents Chemother. 1996; 40, 2760-4.

3 Perichon B, Tankovic J, Courvalin P . Characterization of a mutation in the parE gene that confers
fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob.Agents Chemother. 1997; 41, 1166-
7.



Figure S1. Induction of pmrA, patA, and patB expression in S. pneumoniae exposed for 4 h to increasing concentrations of

ciprofloxacin. Data are presented as the ratios of gene expression in every strain grown with and without inducer. Values are the mean
+ SEM of duplicates from 2 independent experiments. Statistical analysis for the global effect of concentration on gene expression
levels (Friedman test, one-way paired ANOVA, with Dunnett's post-hoc test for comparison with non-induced condition): p-value =

0.012 for patA and 0.001 patB, and 0.2096 (NS) for pmrA, with p<0.05 for 1/4 and 1/2 MIC for patA and for 1/2 MIC for patB vs. non

induced conditions.
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Figure S2. Evolution over time of ODgynm (left axes) and of patA and patB expression
(right axes) in non induced (left panels) and induced (right panels; 1/2 x MIC of
ciprofloxacin) S. pneumoniae ATCC49619 (top) and SP335 (bottom). Values are the

means = SEM of duplicates from 2 independent experiments.
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Figure S3. Relation between induction of patA and patB and of ssbB (left panel) and

recA (right panel) in S. pneumoniae SP335 exposed for 4 h to ciprofloxacin (0.5 or 1x

MIC ; higher concentrations could not be tested because of an intense bactericidal

activity) or mitomycin C (0.5, 1, 10, or 100 x MIC). The data are presented as the ratios

of expression measured for each strain grown in induced and non-induced conditions.

Values are the means + SEM of duplicates from 2 independent experiments. No change

in the expression of the housekeeping genes was noticed, excluding a non specific effect.

Correlation coefficients are calculated from linear regressions of the data.
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A similar experiment performed with S. pneumoniae ATCC49619 (mitomycin C

MIC = 0.015 mg/L) produced essentially the same results, but with lower levels of over-

expression (data not shown).
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