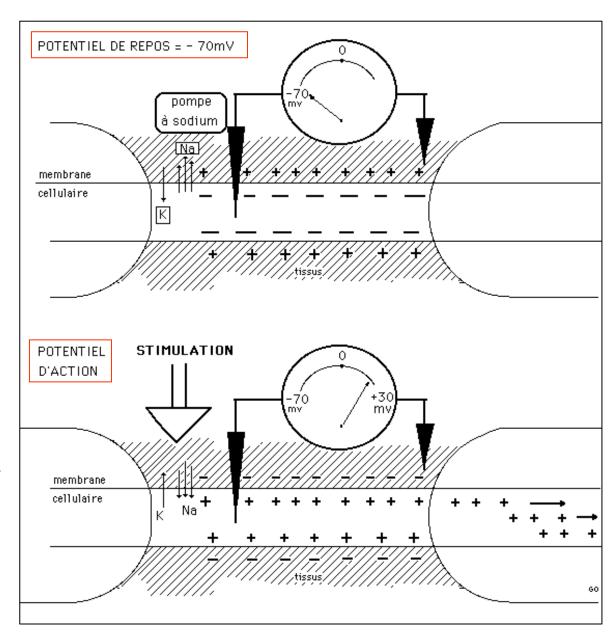
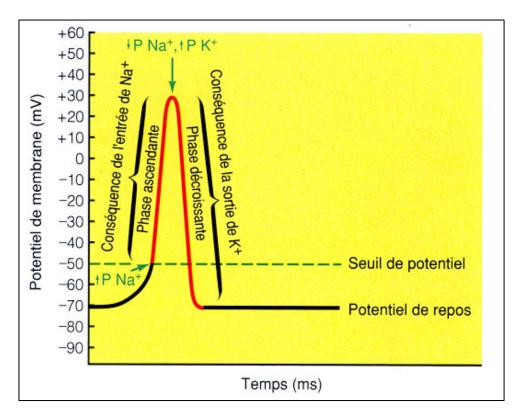
Pharmacologie du système nerveux

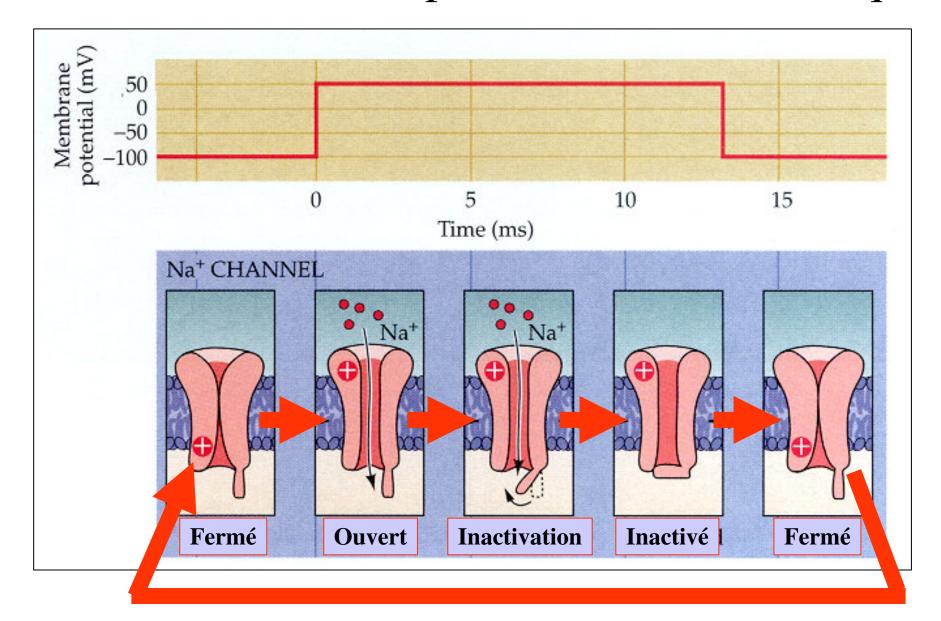

Chapitre 7

Les anesthésiques locaux

Rappels concernant la conduction nerveuse :


Potentiel d'Action =
variation transitoire et
cyclique de la différence de
potentiel transmembranaire
déclenchée par une
dépolarisation initiale de la
membrane neuronale.

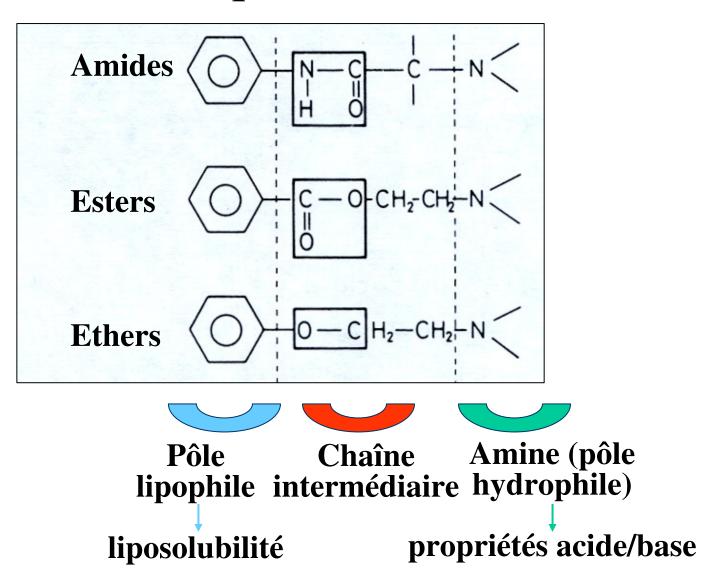
Rappels concernant la conduction nerveuse:


Le potentiel d'action est dû à des mouvements ioniques passifs transmembranaires : courant entrant de Na+ dépolarisation membrane suivie d'un courant sortant de K+ d'intensité comparable permettant la repolarisation de la membrane.

- Durée totale : 1 ms
- Variations de la propagation :
 - Vitesse : selon le diamètre de la fibre (large = rapide)
 - Mode : fibre myélinisées =conduction saltatoire

Anesthésiques locaux 337

Potentiel d'action: implication du canal sodique

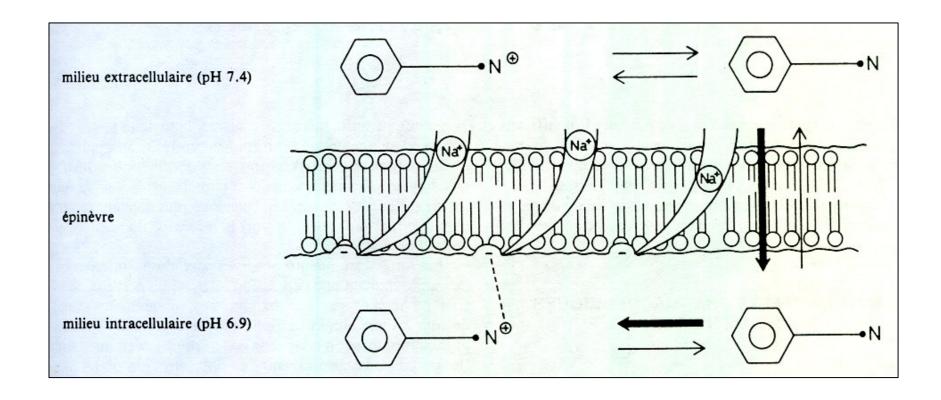


Les types de fibres nerveuses

Type de fibres	Fonction	Diamètre en µm	Myélinisation	Vitesse de conduction (ms)	Sensibilité aux anesthésiques locaux
Type A α	Proprioceptives Motrices	12-20	++	70-120	+
β	Toucher; pression	5-12	++	30-70	++
Y	Motrices des fuseaux neuro-	3-6		15-30	++
8	Douleur*, sensibilité thermique	2-5	++	12-30	+++
Type B	Fibres préganglionnaires du système nerveux végétatif	< 3	+	3-15	++++
Type C (racine dorsale)	Douleur*	0.4-1.2	0	0.5-2.3	++++
Fibres 5) thiones postganglionnaires		0.3-1.3	0	0.7-2.	++++

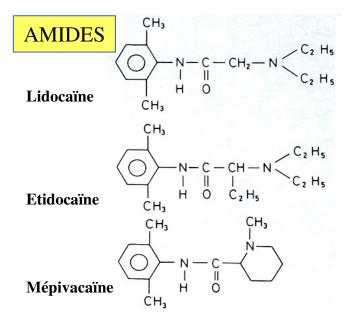
- •La <u>douleur</u> est conduite au travers de fibres <u>fines</u> (fibres C et fibres A delta)
- •Les anesthésique locaux atteignent plus facilement ces fibres de faible diamètre

Anesthésiques locaux : chimie


Anesthésiques locaux : influence du pKa sur l'activité

- La plupart des composés ont un pKa proche de 7,5.
- Dans le milieu extracellulaire, la forme non ionisée est en équilibre avec la forme ionisée

```
\log \frac{[\text{forme ionisée}]}{[\text{forme non ionisée}]} = pKa - pH
```


- La forme non-ionisée peut diffuser dans la cellule neuronale
- Dans le milieu <u>intracellulaire</u>, le pH est plutôt <u>acide</u>, la forme ionisée prédomine. Le composé acquiert ainsi ses propriétés pharmacologiques et ne peut rediffuser hors de la cellule
- La <u>vitesse</u> d'installation de l'effet est liée à la liposolubilité et au pKa.
- La <u>durée</u> de l'effet est liée à la liposolubilité et à son affinité pour les protéines.

Anesthésiques locaux : influence du pKa sur l'activité

Les solutions d'anesthésique locaux sont parfois saturées en CO_2 afin d'acidifier le contenu. Le CO_2 diffuse rapidement dans l'espace intracellulaire.

Anesthésiques locaux : Structure chimique et puissance

Bupivacaine
$$\begin{array}{c} CH_3 \\ N-C \\ CH_3 \\ N-C \\ N \end{array}$$

Ropivaca
$$\stackrel{CH_3}{\underset{CH_3}{\bigvee}} \stackrel{N-C}{\underset{H}{\bigvee}} \stackrel{C_3H_7}{\underset{N}{\bigvee}}$$

Commoné	A a4 ma1	17	D
<u>Composé :</u>	Act. rel.	<u>pKa :</u>	<u>Durée :</u>
Lidocaïne	4	7.8	moy.
Etidocaïne	16	7.7	long.
Mépivacaïne	2	7.6	moy.
Bupivacaïne	16	8.1	long.
Ropivacaïne	16	8.1	long.
Procaïne	1	8.9	court.
Tétracaïne	16	8.5	long.
			
	└ pro	oportionn	el 🗕

ESTERS

Anesthésiques locaux : pharmacodynamie

- Les anesthésiques locaux sont des <u>bloqueurs des canaux sodium</u> voltage dépendants. Ils agissent sous leur forme ionisée. Ils se fixent au sein du canal lors de son ouverture (use-dependent blocking)
- Les anesthésiques locaux ne modifient pas la valeur du potentiel de repos mais freinent le courant entrant de Na⁺ par obstruction du canal sodium (bloquent la dépolarisation). Pas d'entrée de Na⁺, pas de transmission de l'influx, donc pas de douleur.
- Les anesthésiques locaux <u>diminuent l'excitabilité neuronale</u> en
 - diminuant la vitesse de dépolarisation
 - allongeant la durée de la période réfractaire
- Aucune spécificité théorique : concerne les fibres sensorielles et motrices, autonomes... Mais les <u>fibres les plus fines sont plus sensibles</u>.
- Au sein d'un nerf, les fibres externes sont à visée proximale (premières concernées).

Anesthésiques locaux : pharmacocinétique

Résorption:

Variable selon la vascularisation et selon le type de fibre nerveuses

La diffusion est diminuée par addition d'un vasoconstricteur (adrénaline).

L'adrénaline diminue la toxicité et augmente la durée d'action

	Concentration (%)	Sans adrénaline	Avec adrénaline 1/200.000
procaïne	0.5	20	56
lidocaïne	1	128	416
mépivacaïne	0.5	108	240
prilocaïne	1	99	289
bupivacaïne	0.25	199	429

Métabolisme:

Immédiat pour les esters (par les pseudocholinestérases plasmatiques) Plus lent pour les amides (amidases hépatiques)

Anesthésiques locaux : effets systémiques indésirables

Observés en cas de résorption importante

1. Nerveux:

- faibles doses : somnolence, étourdissement
- doses moyennes : excitation (par action sur cortex inhibiteur) (effet recherché par les toxicomanes)
- dose élevées : dépression de l'activité nerveuse

2. Cardiovasculaires:

- faibles doses : antiarythmique
 - + vasoconstriction
- doses élevées : dépression de l'activité cardiaque, bradycardie + vasodilatation

Note : la cocaïne provoque également une vasoconstriction par inhibition de recapture adrénergique

Anesthésiques locaux : Effets indésirables

3. Réactions allergiques :

souvent liées à divers dérivés d'acides p-aminobenzoïques dérivant du métabolisme des composés 'Esters'...

... plus rares pour les amides.

- Manifestations générales : anaphylaxie
- Manifestations cutanées : érythème, eczéma, éruptions

Parfois des réactions croisées entre différents esters (ou entre les différentes amides), mais pas entre esters/amides

Anesthésiques locaux : Usages

Anesthésie de contact :

- Application sur la peau, muqueuses, conjonctive,...
- Dose et nature du composé influencent la latence, l'intensité et la durée.

Durée d'action courte : procaïne, chlorprocaïne Durée d'action moyenne : lidocaïne, mépivacaïne Durée d'action longue : tétracaïne, bupivacaïne

Applications

- dematologique
- buccopharyngée
- ophtalmique
- nasale
- otique
- uro-génitale

Anesthésie par infiltration :

- EXTRA vasculaire!
- Intradermiques, intramuqueuses

Anesthésie par injection intravasculaire (sous garrot)

Blocs de nerf périphérique (dans le plexus)

Anesthésie péridurale et spinale

Chapitre 7 en résumé : Le choix des anesthésiques locaux

Esters
Benzocaïne
Oxybuprocaïne
Procaïne
Proxymétacaïne
Tétracaïne

Amides Articaine Bupivacaïne Lévobupivacaïne Lidocaïne Mépivacaïne Prilocaine Ropivacaïne