
138 Frontiers in Anti-Infective Drug Discovery, 2010, 1, 138-175  
 

Atta-ur-Rahman / M. Iqbal Choudhary (Eds.) 
All rights reserved – © 2010 Bentham Science Publishers. 

Inhibitors of Bacterial Efflux Pumps as Adjuvants in 
Antibacterial Therapy and Diagnostic Tools for 

Detection of Resistance by Efflux 
Françoise Van Bambeke*,1, Jean-Marie Pagès2 and Ving J. Lee3, 4 

1Unité de Pharmacologie Cellulaire et Moleculaire, Université Catholique de Louvain, 
Brussels, Belgium; 2EA2197 Enveloppe Bactérienne, Perméabilité et Antibiotiques, Faculté 
de Médecine, Université de la Méditerranée, Marseille, France; 3Adesis, Inc., New Castle, 

DE 19720, USA; 4Limerick BioPharma, Inc., South San Francisco, CA 94080 USA 

Abstract: Active efflux is a wide-spread mechanism for bacterial resistance to 
antibiotics, which contributes to poor intrinsic susceptibility, cross-resistance to 
structurally diverse classes of drugs, or selection of other mechanisms of 
resistance. Thus, inhibition of efflux pumps appears to be (i) a promising strategy 
for restoring the activity of existing antibiotics, and (ii) a useful method to detect 
the presence of efflux determinants in clinical isolates. Structurally dissimilar 
classes of inhibitors have been patented in the last decade, some are analogues of 
antibiotic substrates [tetracyclines, quinolones or aminoglycosides] and others are 
new chemical entities [including substituted indoles, ureas, aromatic amides, 
piperidinecarboxylic acids, alkylamino- or alkoxyquinolines, peptidomimetics, and 
pyridopyrimidines]. Their spectrum of activity, in terms of companion antibiotics 
and bacteria, differ significantly. Narrow spectrum inhibitors are of prime interest 
as diagnostic tools, while broad spectrum inhibitors are expected for adjuvant 
therapies. Apart from (i) a peptidomimetic inhibitor of Mex pumps in 
Pseudomonas aeruginosa (MC-04,124), for which efficacy was evaluated in 
animal models, and (ii) a piperidinecarboxylic acid inhibitor of fluoroquinolone 
efflux in Gram-positive (VX-710), which was safely administered to humans, most 
of these products have only demonstrated their activity in vitro, so further 
investigations are needed to evaluate their clinical potential. 

Keywords: Efflux pumps, resistance, S. aureus, S. pneumoniae, H. influenzae, E. coli, P. 
aeruginosa, E. aerogenes, reserpine, indoles, ureas, aromatic amides, piperidine-carboxylic 
acid derivatives, quinolines, peptidomimetics. 

GENERAL DESCRIPTION OF ANTIBIOTIC EFFLUX PUMPS IN BACTERIA 
AND IMPACT IN ANTIBACTERIAL THERAPY 

 Active efflux was first described in 1980, as a causative mechanism of resistance to 
tetracyclines [1]. It has subsequently been found to be a widespread mechanism that confers 
to both Gram-positive and Gram-negative organisms the capacity to expel antibiotics from 
all the major structural classes ([2-4] for reviews). More recent studies, however, suggest 
that antibiotics are only opportunistic substrates of these physiological transporters, with  
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efflux pumps also playing a major role in the extrusion of poorly diffusible endogenous 
molecules [5-7] and protection of bacteria against exogenous, potentially harmful, diffusible 
substances [8-10]. In this context, antibiotics have probably provided the necessary pressure 
that selects for efflux pump overexpression as a non-specific mechanism of resistance ([11] 
for a review on the regulation of the expression of efflux pumps by antibiotics and other 
pump substrates). 

 Phylogenetically, bacterial antibiotic efflux pumps belong to five superfamilies (see 
<http://www.biology.ucsd.edu/~msaier/transport/> for classification and [12,13] for reviews 
and application to antibiotic transporters), namely (i) ABC (ATP Binding Cassette), which 
are primary active transporters energized by ATP hydrolysis, and (ii) SMR (Small 
Multidrug Resistance subfamily of the DMT [Drug/Metabolite Transporters] superfamily), 
(iii) MATE (Multi Antimicrobial Extrusion subfamily of the MOP [Multidrug/Oligo-
saccaridyllipid/Polysaccharide flippases] superfamily), (iv) MFS (Major Facilitator 
Superfamily) and (v) RND (Resistance/Nodulation/Divison superfamily), which are all 
secondary active transporters driven by ion gradients. Since these pumps are discussed in 
details in recent reviews (topology, presence in bacterial species, main substrates 
[2,3,13,14]), we will focus here on the elements pertinent for the present review, namely 
antibiotic transport in clinically-relevant pathogens. Table 1 lists the main transporters 
identified so far in frequently encountered human pathogens, together with the main 
antibiotic classes they transport. It is clear that MFS and RND are the most abundant pumps, 
with MFS found in both Gram-positive and Gram-negative bacteria, and characterized by a 
narrow spectrum (recognizing usually one, and sometimes a few, antibiotic classes), and 
RND found exclusively in Gram-negative bacteria and displaying an extremely wide 
spectrum (recognizing usually several classes of antibiotics [from 2 to 7] together with other 
pharmacological agents like antiseptic compounds, dyes, or detergents [15-17]). Of note, 
ABC transporters, which play a major role in drug resistance in eukaryotic cells [18], are 
lesser known in bacteria (MsrD and PatA/PatB in S. pneumoniae [19, 20]; MsrA and Vga in 
S. aureus [21-23]). 

 Active efflux usually confers a moderate level of resistance (1- to 64-fold increase in 
MIC upon expression of efflux pumps, both in laboratory mutants and clinical isolates; see 
[24-29] for a few examples). Nevertheless, it markedly affects the response of bacteria to 
antibiotics. Potential consequences of antibiotic active efflux have been discussed 
extensively elsewhere ([13, 16] for reviews) and can be summarized as follows: 

• Apparent poor permeability of antibiotics in some bacteria has been attributed to the 
constitutive expression of efflux pumps, which confers a natural resistance to 
unrelated antibiotics [30]. This is best exemplified in Pseudomonas aeruginosa, in 
which disruption of the gene encoding the MexB efflux pump makes these mutants 
hypersusceptible to chloramphenicol, fluoroquinolones, tetracyclines or β-lactams 
[31].  

• Cross-resistance to unrelated antibiotic classes can be observed in bacteria 
expressing pumps with broad substrate specificity, like RND [32]. Thus, exposure to 
a given antibiotic may select resistance to other classes by triggering the 
overexpression of these pumps. Further, efflux pumps can transport antiseptic 
compounds, with similar consequences in terms of cross-resistance or selective 
pressure [15,33]. In addition, common regulators for independent mechanisms of 
resistance have been described, so that exposure to an antibiotic that is not subject to  
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Table 1. Principal Efflux Pumps Expressed in Selected Human Pathogens and their Main 
Antibiotic Substrates (Adapted from [3] and [13]) 

Antibiotics 

Organism 
(Super) 
Family 

Efflux Pump 

β-
la

ct
am

s 

A
m

in
og

ly
co

si
de

s 

Fl
uo

ro
qu

in
ol

on
es

 

M
ac

ro
lid

es
 

L
in

co
sa

m
id

es
 / 

st
re

pt
og

ra
m

in
 A

 

T
et

ra
cy

cl
in

es
 

T
ri

m
et

op
ri

m
 

Su
lfa

m
id

es
 

C
hl

or
am

ph
en

ic
ol

 

S. aureus ABC MsrA    +      

  Vga     +     

 MFS MdeA    +      

  NorA   +      + 

  NorB   +   +    

  Tet K-L, Tet38      +    

S. pneumoniae ABC MsrD    +      

  PatA/PatB   +       

 MFS MefA    +      

  MefE    +      

  PmrA   +       

  Tet K-L      +    

H. influenzae MATE hmrM   +       

 MFS TetB,K      +    

 RND AcrAB-TolC +   +   +   

E. coli ABC MacAB-TolC    +      

 MATE YdhE   +    +  + 

 MFS Bcr      +  +  

  Dep      +    

  ErmAB-TolC   +   +    

  Fsr       +   

  MdfA  + + +  +   + 
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(Table 1) Contd….. 

Antibiotics 
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  SetA  +        

  Tet A-E      +    

  Ycel   +       

  YidY         + 

  YebQ       +   

 RND AcrAB-TolC +  + +  + + +  

  AcrAD-TolC  +        

  AcrEF-TolC +  + +  + +   

  YegN   +       

 SMR ErmE    +  +    

P. aeruginosa MFS Tet A, C, E      +    

  CmlA         + 

 RND MexAB-OprM +  + +  + + + + 

  MexCD-OprJ +  + +  + +  + 

  MexEF-OprN   +    +  + 

  MexJK-OprM    +  +    

  MexXY-OprM  + + +  +    

E. aerogenes MFS CmlB         + 

 RND AcrAB-TolC   + +  +   + 

  EefABC   + +  +   + 

 
efflux can trigger overexpression of efflux pumps. As an example, the expression 
level of the marA regulator, which is involved in the genetic control of membrane 
permeability via porin and AcrAB-TolC efflux pump expression, can be affected by 
imipenem in Enterobacter aerogenes, so that exposure to this carbapenem, which is 
not a substrate for the pump, is accompanied by a loss in susceptibility to quinolones, 
tetracycline, and chloramphenicol [34]. 
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• Wide spectrum or high level resistance can be observed in bacteria in which active 
efflux and other mechanisms of resistance function synergistically. This is 
exemplified in an Escherichia coli strain that concomitantly expresses β-lactamase 
and efflux pumps, and is therefore insensitive also to β-lactams resisting enzymatic 
hydrolysis [29]. Likewise, the combination of target mutations and of active efflux 
increases the level of resistance to fluoroquinolones [35]. Combination of poor influx 
(due to modification of porins) and increased efflux is also responsible for a 
significant loss of antibiotic susceptibility [36]. 

• Selection of mutations can be favored in bacteria overexpressing efflux pumps, 
because antibiotic targets become exposed to subinhibitory concentrations. This has 
been demonstrated in Pseudomonas aeruginosa, in which disruption of the three 
main RND efflux pumps is required in order to reduce the appearance of first-step 
mutants in fluoroquinolone targets (from 10-7 to < 10-11 [28]). Few epidemiological 
surveys, however, document the respective contribution of efflux and mutations in 
resistance of clinical isolates. What can be concluded at the present stage is that it is 
highly variable, depending on the bacteria, the antibiotic class, and the geographic 
area examined, as exemplified in a study of macrolide resistance in 8 European 
countries [37]. 

 Natural genetic recombination facilitates the dissemination of efflux-mediated 
resistance. The expression of resistance usually appears upon mutation(s) in the 
corresponding regulatory system (see [2] for review) but may also occur following 
mutations altering substrate specificity of transporters or acquisition of mobile genetic 
elements expressing non-native pumps (see [38] for review). Genetic elements encoding 
pumps and their regulators can be located on plasmids or on conjugative or transformable 
transposons [39]. Moreover, these determinants can be transferred between disparate 
bacterial species [40].  

 On these basis, it is not surprising that epidemiological surveys, although often limited to 
specific populations or geographic areas, report on the high prevalence of efflux pumps in 
clinical isolates [27,37,41-44]. Accordingly, the importance of efflux as a resistance 
mechanism in the clinics is acknowledged in various review papers [30,38,45-48]. 

 Thus, strategies aimed at overcoming resistance by efflux are compelling, like the 
combination of β-lactamase inhibitors with β-lactams to combat resistance in β-lactamase 
producing pathogens [49]. 

STRATEGIES TO OVERCOME RESISTANCE BY EFFLUX 

Bypassing Efflux Pump Mechanisms 

 Even though the molecular determinants responsible for the recognition of antibiotics by 
efflux pumps have not yet been fully elucidated, differences in transport can be observed 
between structural analogues within an antibiotic family. In this respect, it is interesting to 
note that the newer molecules developed from the main antibiotic classes are less 
susceptible to efflux than older ones, as demonstrated for the third and fourth generation 
quinolones versus first and second generation quinolones, for ketolides versus macrolides, 
or for glycylcyclines versus tetracyclines ([13,16] for reviews). Optimizing the structure of a 
molecule within an antibiotic class by taking into account susceptibility to resistance 
mechanisms is thus an important design element. 
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Biological Inhibition of Active Efflux 

 A strategy to inhibit efflux pump activity could consist of blocking either the proteins 
themselves, using neutralizing antibodies, or the corresponding genes, by means of antisense 
approaches. The latter employs antisense oligonucleotides or small interfering RNA (which 
selectively prevent the transcription of the gene coding for the pump), or other non-
traditional antisense molecules, which can interfere with the transcription or the translation 
of that gene of that RNA. This patented strategy was exemplified for the inhibition of the 
AcrAB efflux pump in E. coli [50], but its application could be broadened to every pump of 
known sequence or regulatory mechanism, or for which antibodies can be produced. The 
usefulness of this strategy is based on the demonstration that deletion of the acrAB gene in 
E. coli restores its sensitivity to a series of antibiotics [51], while a mutation in its Mar 
regulator has the opposite effects [52]. This approach is primarily a tool to study the role of 
efflux pumps in pathogens on antibiotic exposure in vitro, not applicable for therapeutics.  

Pharmacological Inhibition of Active Efflux 

 A more widely exploited strategy is the development of inhibitors of efflux pumps 
([53,54] for recent reviews), which are intended for adjunctive therapy with specific 
antibiotics. Conceptually, pharmacological inhibition of efflux pumps can be attained by 
different mechanisms [55]. The dissipation of the energy gradient that drives an efflux pump 
is a non-specific strategy that will not be discussed here in details. Notable example is the 
energy decoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), used for in vitro 
studies with bacteria efflux pumps, being also extremely toxic to eukaryotic cells. The 
creation of a perturbation in the outer membrane channel or the assembly of the three 
proteins constituting the efflux system are strategies restricted to Gram-negative bacteria, 
where efflux pumps consist of a tripartite protein complex working in concert (the pump 
itself is located in the inner membrane, and is connected to a channel crossing the outer 
membrane by an adaptor protein; [56] for review). The induction of a flux-competition in 
the pump it-self is therefore probably the more general mechanism of action for pump 
inhibitors. At the present stage, however, few reports are available that study the mode of 
action of inhibitors with efflux pumps, but the situation should change in the near future, 
because the first crystal structures of efflux pumps were recently obtained [57-59]. 

 Figs. (1 and 2) show the general structure of the main classes of inhibitors that have been 
patented so far, and Table 2 lists the most active compounds from various chemotypes and 
their spectrum of pump inhibitory activity.  

 The first efflux pumps inhibitors were fortuitously discovered from existing drugs. The 
most popular one is reserpine (1) [60-62], but similar effects were described with the 
phenothiazines (2) [63], calcium channel antagonists (3) [63,64], selective inhibitors of 
serotonin re-uptake (4) [65], or proton pump inhibitors (5) [66,67]. A major limitation for 
combining these drugs with antibiotics is that they need to be used at concentrations 
significantly higher than that used to exert their pharmacological effects, which makes them 
unviable for safety reasons. Derivatives devoid of the pharmacological activity of the parent 
compound are now produced, as described for inhibitors of serotonin reuptake [65,68] or of 
omeprazole (6) [69,70]. Likewise, natural products-derived inhibitors, such as 5’-
methoxyhydrocarpin (7) [71,72] or totarol (8) [73] have been reported ([74] for review and 
[71,75-78] for other examples), but their therapeutic index is sometimes questionable, and 
their purification, laborious and time-consuming. Semi-synthetic derivatives of these natural  
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Fig. (1). General structure of analogues of antibiotics used as inhibitors of bacterial efflux pumps. The 
figure shows the chemical structure of antibiotics on the left, and the general structure of inhibitors on 
the right. The parts common between antibiotics and inhibitors are highlighted in bold characters.  
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products with improved activity have also been described, as exemplified for piperine 
analogues (9,10) that are 2-4-fold more potent than the parent compounds at 8-fold lower 
concentrations [79,80], stimulating further research in that direction [81].  
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(Fig. 2) Contd….. 
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Fig. (2). General structure of classes of inhibitors of bacterial efflux pumps corresponding to new 
chemical entities that have been patented so far. Parts of the molecules appearing in bold correspond 
the skeleton of the inhibitors shown in Table 2. 

 The convincing demonstration of the in vitro capacity of these pharmacological agents 
or of natural molecules to restore antibiotic activity in strains encoded with efflux-mediated 
resistance has however stimulated research for new inhibitors that are free of 
pharmacological activity on eukaryotic cells. 

 A first category of original inhibitors are chemotypes of clinically-used antibiotics, with 
low intrinsic antibacterial effects. Three main families have been patented so far, namely 
analogues of tetracyclines, aminoglycosides, and quinolones, which minimize efflux of the 
corresponding antibiotics.  

 The second category consists of inhibitors that are structurally unrelated to known 
antibiotics, and totally new entities. Some of them inhibit pumps that efflux multiple classes 
of antibiotics. 

 Based on empiric observations on the properties of these inhibitors, one can conclude the 
following: 

• The chemical structure of the various inhibitors (Table 2) has several recurrent 
structural features, namely (i) aromatic rings, which are present in all molecules 
(except aminoglycoside analogues) and ionizable moieties, which are found in many 
(but not all) of the putative inhibitors. This is consistent with the fact that efflux 
pumps preferentially transport amphiphilic substrates [82] and possess affinity 
binding pockets presenting at their surface amino-acid side chains prone to establish 
hydrophobic, aromatic stacking and van der Waals interactions [83].  

• Some of the inhibitors also modulate eukaryotic multidrug transporters like 
P-glycoprotein, MRP, or BCRP, as demonstrated for verapamil (3) [84], VX-710 (22) 
[85], VX-853 (23) [86], and GF120918 (34) [87,88] (note that these inhibitors are not 
specific for ABC transporters in bacteria as they are in eukaryotic cells; see the data 
shown in Table 2). Since antibiotics are also substrates for eukaryotic efflux pumps 
([18] for review), this property is possibly advantageous. Indeed, efflux pumps 
expressed by eukaryotes can modulate (i) the pharmacokinetic profile of the 
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antibiotics (absorption, distribution, elimination), and concomitantly their serum level 
([18] for review), and (ii) their cellular accumulation, which impacts their activity in 
intracellular infections ([89-91] for examples). In contrast, other inhibitors like MC-
207,110 (28) do not interact with eukaryotic transporters [92]. This favors a 
specificity of action and minimizes untoward effects due to inhibition of 
physiological functions of eukaryotic efflux pumps. 

ANALYSIS OF THE MAIN CLASSES OF EFFLUX PUMPS INHIBITORS  

Tetracycline Analogues (See Patent [93]) 

 Inhibitors of tetracycline efflux were identified by their ability to reduce tetracycline 
efflux in inverted membrane vesicles enriched in one of the efflux resistance determinants. 
Structure-activity relationships have shown that most effective inhibition is obtained for 6-
(alkylthio)methyldoxycycline analogues (11,12) [94,95]. These derivatives are usually more 
potent inhibitors of class A or B efflux determinants (found in E. coli) than of class K or L 
(found in Gram-positive organisms), producing synergistic effects with tetracyclines in 
Gram-negative, but additive effects in Gram-positive [96]. However, they show an intrinsic 
antibacterial activity on Gram-positive, with MIC close to those of doxycycline in 
non-resistant strains as well as in resistant strains due to ribosomal protection (TetM) [96]. 
This unexpected observation suggests that, in Gram-positive, these analogues are able to 
inhibit the pump and also bind, probably differently than conventional tetracyclines, to the 
tetracycline binding site on the ribosome. This may pave the way to the design of new 
compounds endowed with a higher intrinsic activity, encompassing strains that are resistant 
due to efflux or ribosomal protection. 

Aminoglycoside Analogues (See Patent [97]) 

 Aminoglycosides have been historically considered as poor substrates for efflux pumps, 
because of their highly hydrophilic nature. Recently they were shown to be transported by 
(i) a few narrow spectrum efflux pumps of the MFS superfamily, which also transport 
sugars, and (ii) wide spectrum efflux pumps of the RND superfamily, like the AcrAD-TolC 
pump of E. coli or the MexXY-OprM pump of P. aeruginosa (Table 1). Accordingly, the 
patent claims the use of analogues (13) of the aminoglycoside paromomycin as inhibitors of 
efflux pumps, based on studies with Haemophilus influenzae. The analogues tested show a 
higher intrinsic activity (1 to 4-fold decrease in MIC) against Acr-disrupted H. influenzae 
than against the wild-type strain, suggesting a competitive mode of inhibition. These 
analogues also increase the susceptibility of wild-type strains and clinical isolates to 
gentamicin and tetracyclines. Notably, the efflux of aminoglycosides has not yet been 
documented (neither positively, nor negatively) in H. influenzae.  

Fluoroquinolone Analogues (See Patent [98]) 

 These modified fluoroquinolones (or ester derivatives) are able to increase the activity of 
these antibiotics in Gram-positive and Gram-negative organisms overexpressing well-
characterized efflux pumps. Optimal targeting to a given bacterial species (or a given 
transporter) can be obtained by modifying the substituents in position 1, 7, or 8 (14-17). 
Quite intriguingly, some of these inhibitors also restore macrolide activity in streptococci 
overexpressing Mef pumps. In the absence of any detailed publications on these inhibitors,  
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it is difficult to rationalize this observation in the cited patent. Noteworthy, dimeric 
piperazinyl-linked fluoroquinolones display potent antibacterial activity against S.aureus, 
including resistant strains due to NorA pump activity as well as mutations in topoisomerase 
IV [99], inferring that they combine a high intrinsic activity and a low affinity for NorA. 

Indoles, Ureas and Aromatic Amides (See Patent [100]) 

 Markham et al. screened a library of compounds by an uptake assay for ethidium 
bromide in NorA-overexpressing S. aureus, with 399 (4 %) molecules demonstrating 
activity and belonging to four chemotypes, namely indoles (18) (note the indole moiety also 
present in reserpine), biphenylureas (19), aromatic amides (20), and molecules bearing a 
trichloromethylaminal group [101]. Two other active compounds (INF 277 (39) and INF 
392 (40)), not structurally similar with the above chemotypes, were also mentioned in the 
patent (Fig. 2). Further molecules in the indole series have been produced recently, with 
similar activities [102,103]. The broad structural diversity of inhibitors therefore suggests 
that the inhibited transporters have low structural specificity for substrate/inhibitor 
recognition. 

  All active products synergize the uptake of ethidium bromide and ciprofloxacin, and also 
reduce the selection of resistant mutants (at least 50-fold). Their inhibitory profile typically 
showed activity with homologous transporters, like Bmr from Bacillus subtilis, and, for 
some of them, PmrA of Streptococcus pneumoniae [101]. The structural diversity of 
molecules showing activity increases confidence that some pharmacophores will have 
appropriate safety profile and can be used to construct molecules usable in adjunctive 
therapy. For example, leads with the trichloromethylaminal group have been abandoned 
[101], and INF 392 (40) and INF 240 (20) have significantly different cytotoxicity profile 
(INF 392 (40) showing the highest, and INF 240 (20) the lowest selectivity for bacterial 
cells [100]).  

Arylbenzo[b]thiophenes and Diarylthiophenes (See Patent [104]) 

 Based on the observation that the activity of INF55 was more dependent on the 2-
arylindole moiety than on the nitro substituant [101], sulfur analog of this molecule were 
produced, giving raise to arylbenzo[b]thiophenes and diarylthiophenes. These were tested 
for their capacity to restore ciprofloxacin activity in NorA producing and of erythromycin in 
MsrA producing strains of S. aureus and for their safety towards eucaryotic cells [105]. 
Most active molecules belong to the aryl benzothiophenes; the nature of the benzyl 
substituents affects the spectrum of activity (specificity to NorA or broader spectrum).  

Piperidine-Carboxylic Acid Derivatives (See Patent [106]) 

 This class of molecules was patented [85,107-110] as inhibitors of P-glycoprotein and of 
MRP-1, with VX-710 (22, biricodar) progressing through Phase II clinical trials [111] as 
adjuvant for the treatment of cancer by paclitaxel, mitoxantrone or anthracyclines [112-
114]. Since its pharmacokinetic and toxicity profile in humans was already established in 
the above studies [115,116], it may expedite its profiling for combination use with 
antibiotics. Since a broad range of structural variations are disclosed in the patent (Fig. 2), it 
is probable that molecules selective for inhibition of prokaryotic or eukaryotic transporters 
can be identified in the future. Simultaneous inhibition of both eukaryotic and prokaryotic 
transporters is indeed disadvantageous. Dual inhibitors could alter the pharmacokinetics of 
antibiotics or cause toxicity when used as adjuvants to antibiotics, or, on the contrary, 
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indirectly select bacteria acquiring resistance to them when used in combination with 
anticancer agents. 

 While the efficacy of VX-710 (22) and VX-843 (23), in combination with fluoroqui-
nolones [117], has been demonstrated so far in Gram-positive organisms, the patent claims 
encompass a range of bacteria and classes of antibiotics belonging to different classes which 
need further validation.  

Alkylaminoquinolines, Thioalkoxyquinolines, Alkoxyquinolines (See Patent [118]) 

 These compounds were found to increase the accumulation and the activity of 
chloramphenicol in AcrAB-TolC-positive clinical isolates of Enterobacter aerogenes, and 
were selected for their selectivity, a negligible intrinsic activity and no permeabilizing effect 
on the membrane [119,120]. Optimal structure-activity relationships of the alkylaminoqui-
nolines were found with piperidino- (24) or morpholino- (25) substituents [120], and that the 
alkoxyquinolines (26) and thioethers (27) were comparable [121]. Methylation of the 
pendant unit of the alkoxyquinolines further increases activity [120]. The data suggests that 
the alkylamino moieties on the quinoline backbone play a strategic role in recognition by the 
pump and competition for transport. Mallea et al., [120] have calculated that the maximal 
exclusion space of alkylaminoquinolines is 20 Å, which could fit into the central pore of the 
inner membrane protein AcrB, which is thought to play a major role in the transport 
function of the protein [122], and with the restricted region of this pore in particular [57]. 
This suggests that inhibition could occur either on the inner membrane protein itself, or at 
the inner pump-outer channel junction, where this restriction is located.  

 Again, additional studies are needed to determine the spectrum of activity of these 
inhibitors, with other clinically-relevant Gram-negative bacteria expressing broad-spectrum 
RND transporters. 

Peptidomimetics (See Patents [123-125]) 

 MC-207,110 (28) was selected as lead compound, after screening a library of 150K 
natural products and synthetic molecules, for synergism with levofloxacin towards 
P. aeruginosa [92,126]. Mechanistic studies have shown that it specifically increases the 
activity of antibiotics that are substrates for Mex pumps without perturbing proton gradients 
[127]. These studies suggest that it is also a substrate for efflux pumps, since it displays low 
intrinsic activity only in bacteria in which the genes coding for the main efflux pumps have 
been disrupted. This activity seems to be due to disruption of membrane integrity [127]. 
Additional structural modifications have provided derivatives for in vivo evaluations. The 
initial goal consisted of improving the proteolytic stability of the inhibitors in biological 
media, which was achieved by structural permutations, including using D-amino-acids, 
exemplary is MC-02,595 (29) [128]. The second goal focused on enhancing the therapeutic 
indices and pharmacokinetic-pharmacodynamic profile of the molecular class for in vivo 
applications. A balance of these features is present in the conformationally-restricted 
analogues like MC 04,124 (30) [129,130]. In parallel studies, structure-activity relationships 
have shown that the peptidic backbone present in these three inhibitors is not essential for 
inhibitory activity [131].  

Substituted Disiloxanes (See Patent [132]) 

 SILA 421 (38) is a potent inhibitor of efflux pumps in cancer cells and in multidrug 
resistant E. coli [133]. Interestingly enough, it shows antibacterial activity against multidrug 



Inhibitors of Bacterial Efflux Pumps Frontiers in Anti-Infective Drug Discovery, 2010, Vol. 1     165 

resistant Mycobacterium tuberculosis at concentrations that are not toxic for eucaryotic cells 
[134]. Since this effect is obtained with SILA 421 alone, it is unlikely to result from efflux 
pump inhibition.  

Other Original Derivatives (Not Patented) 

 Five other structural classes of inhibitors have been reported, but no associated patents 
or patent applications have been cited. 

 Ro 07-3149 (33) increases the accumulation of tetracyclines in S. aureus by non-
competitive inhibition of the TetK transporter [135]. Interestingly, it loses it activity when 
TetK is expressed in E. coli, probably due to insufficient permeability of the outer 
membrane of this Gram-negative to the compound [135]. In contrast with the derivatives 
lacking the hydroxypropyl side chain, Ro 07-3149 does not affect the energy state of the 
pump [136]. 

 Similar to VX-710 (22) or VX-843 (23), GF120918 (34) [137] was evaluated as an 
inhibitor of P-glycoprotein and BCRP [66,67]. It underwent Phase I studies, in combination 
with anthracyclines [138,139] in several animal studies, to demonstrate modulation of the 
pharmacokinetic profile of anticancer agents [140] and some antivirals [141,142]. It was 
more recently shown to also markedly increase the effectiveness of fluoroquinolones, and 
marginally that of macrolides and tetracyclines against S. aureus [143]. However, the 
effective concentration required to modulate active transport in bacteria is significantly 
higher than the human toxicity levels [144].  

 The arylpiperidines are topologically similar to some serotonin reuptake inhibitors (4). 
The paroxetine isomer NNC 20-7052 (35) is equipotent as paroxetine inhibiting MFS- 
(NorA and TetK) and RND-class (AcrB) pumps but much less potent as an inhibitor of 
serotonin reuptake [65], suggesting that absolute stereochemistry maybe unimportant as far 
as pump inhibition is concerned and that structural congeners may combine reasonable 
safety profile and potency. Among them, a dihalo analog (36) was effective in restoring 
linezolid accumulation in E. coli [145], even though linezolid has not yet been documented 
as potential substrate for efflux pumps in general ([146] for a preliminary report). Similarly 
1-(1-naphthylmethyl)-piperazine (37) facilitated the accumulation of levofloxacin in E. coli 
and the activity of several antibiotics [147]. It also reverses antibiotic resistance in 
A. baumanii [148] It is however moderately active to restore fluoroquinolone activity in 
clinical isolates of E. coli and other enterobacteriaceae [149,150]. 

 Citral-derived amides [151] were designed based on the observation that piperine [152], 
a major constituent of Piper nigrum, and semi-synthetic derivatives thereof are potent 
inhibitors of NorA [79-81]. The most potent molecules belong to the 9-formyl-5-methyl-
deca-2,8-dienoic acid group of amides (38) and cause a 4-fold reduction in MIC at 25 µM 
[151]. This remains slightly inferior to the SK-20 (9) or SK-56 (10) analogs of piperine, 
which caused a 8-fold reduction in MIC at 6.25 µM [79].  

Hybrid Molecules 

 An elegant way to facilitate the potential use of efflux pump inhibitor is to develop 
hybrid molecules that combine both the antibiotic moiety and an inhibitor of its efflux. A 
priori, this should permit simultaneous delivery of both molecules to the target site of 
infection. Two examples illustrating this strategy have been published so far.  
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 The first one consists in a hybrid of berberine, a natural antibacterial agent, with INF55 
(18) [153] or simplified derivatives thereof [154]. These compounds are > 300 fold more 
active than berberine alone against NorA overproducers; however berberine is not approved 
for human use. Another example are the fluoroquinolones conjugated via position 7 with an 
efflux pump inhibitor [155]. These compounds maintain the inhibitory activity of the 
inhibitor alone but show higher MICs than the parent fluoroquinolones. 

Potential Uses of Efflux Pumps Inhibitors (see also [156] for Review) 

 The first application of these inhibitors would obviously be restoration of antibiotic 
activity against bacteria that encode a mechanism of resistance by efflux. Since the 
compelling inhibitors described herein lack intrinsic antibacterial activity, they need to be 
used in combination with antibiotics, similar to the β-lactamase inhibitor-β-lactam 
combinations. At the present time, data exists for the efficacy and safety of such 
combinations from animal studies. A preliminary report discusses the potentiation effect of 
MC-04,124 (30) (Table 2) with levofloxacin in mouse models of P. aeruginosa infections 
(thigh infection and sepsis), and that of azithromycin in a mouse model of E. coli 
pyelonephritis [157]. Except for the above studies, other examples of this strategy are based 
on in vitro data that demonstrate synergy between inhibitors and antibiotics. The latter is 
accompanied by a shift of MIC to lower values, which makes the whole population more 
susceptible to antibiotics (as an example, the MIC90 of a P. aeruginosa population to 
levofloxacin shifted from 8 to 0.5 mg/L in the presence of MC-207,110 (28) [126]). 
Importantly also, this synergy may reduce the selection of resistant mutants, based on the 
observation that resistance to quinolones by target mutation is difficult to select in strains 
lacking functional efflux systems [158]. A same effect was demonstrated for (i) reserpine 
and quinolones in S. aureus [159] and (ii) MC-207,110 (28) and quinolones in 
P. aeruginosa ([127]; in this case, the probability to select resistant mutants falls to a same 
level as upon disruption of the genes encoding efflux pumps [28]). Increasing antibiotic 
concentration in a bacteria above the MPC (Mutation Prevention Concentration), the 
concentration that corresponds to the minimal concentration to prevent enhancement of 
resistant mutants, is important. MPC values will vary depending on the antibiotic class and 
the bacteria, but is typically 5-10 times higher than the MIC (see [160] for a review of the 
concept). Of note, a recent study suggests that exposure to an efflux pump inhibitor like 
resepine can trigger overexpression of efflux pumps in S. pneumoniae [161], suggesting that 
resistance to inhibitors can also develop.  

 Considerable debate exists on whether efflux pumps are expressed in vivo. Indirect 
evidence exists from studies in Gram-negative bacteria. For example, P. aeruginosa 
multidrug transporters are involved in the secretion of virulence factors and quorum-sensing 
molecules and are therefore needed for host invasion [6]. Moreover, mechanisms of 
regulation are common between efflux pumps and virulence genes [162]. Interestingly 
enough, a cystic fibrosis epidemic strain displays an enhanced virulence (by up-regulation 
of its quorum-sensing system) and an increased antimicrobial resistance associated to 
mutations in efflux pump genes [163]. In enteropathogens, efflux pumps are essential for 
survival in the gut, since they expel bile salts present in this hostile environment [10,164]. In 
Gram-positive organisms, in contrast, the physiological roles of efflux pumps have not yet 
been established. The only evidence of their potential clinical importance in the clinics is 
that their overexpression is evidenced in clinical isolates of Gram-positive organisms [165-
167], as it is in clinical isolates of Gram-negative organisms [29,168-170].  
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 A second application of pump inhibitors is their use as diagnostic tools. Reserpine is 
commonly used for Gram-positive pathogen profiling [166,167] and MC- 207,110 for 
Gram-negative bacteria [27,168,170,171], but the absence of specificity of these inhibitors 
does not allow for classification of the active efflux pumps. The results reported from the 
search of specific inhibitors (31), as done for the MexAB-OprM pump in Pseudomonas 
[172-175] (patent [176] and Fig. (2) and Table 2 for structure) are instructional. When other 
mechanisms of resistance are present, which mask the effect of the inhibitor, false-negative 
results can occur in such studies. This is particularly critical for broad-spectrum pumps in 
multi-resistant organisms, for which a single substrate is usually used as reporter of efflux 
pump activity [177]. 

CURRENT AND FUTURE DEVELOPMENTS 

 In a world of increasing bacterial resistance to antibiotics, the search of therapeutic 
alternatives to currently existing drugs appears is a priority. This challenge can be met in 
two ways [178].  

 The first one consists in the discovery of antibiotics directed against new pathogen 
targets (reviewed in [179]), which are therefore not affected by existing mechanisms of 
resistance. This strategy is daunting because (i) the discovery of such new entities is 
laborious and (ii) development of resistance to these new antibiotics is inevitable. Lessons 
can be learned from the post-approval events of linezolid, the only novel class of antibiotics 
introduced in the last decade [180,181], in which resistance was rapidly observed [see [182] 
for a recent survey]).  

 An alternative, and maybe more rewarding pathway towards new antibacterial therapies, 
embraces the development of inhibitors of resistance mechanisms, which allows extending 
the utility of existing antibiotics with well known pharmacological and toxicological 
properties. Efflux pump inhibitors belong to this second strategy.  

 The present review highlights inhibitors of bacterial efflux pumps, which have shown 
promise in vitro. They can be used as diagnostic tools for detection of active efflux in 
pathogens as a mechanism of resistance. For this application, narrow-spectrum inhibitors 
will be preferred which allow gross identification of the transporters that are expressed. At 
the present time, phenotypic analysis approach is limited to epidemiological surveys, or 
characterization of resistant mutants in research laboratories; detection of resistance by 
efflux is not yet implemented in routine clinical laboratories. The concomitant development 
of genotypic methods, in combination with phenotypic methods, allows for a more precise 
identification of the pump [177,183] will probably be adopted in the near future.  

 In sharp contrast, developing combinations of efflux inhibitors with antibiotics is a 
continuing challenge. A priori, broad-spectrum inhibitors have substantial potential for 
clinical applications. The selection could be possibly oriented towards inhibitors targeting 
several pumps in a given organism (to be added to antibiotics for empiric therapy) or 
targeting transporters of a given class of antibiotics in different bacterial species (to be used 
in combined formulations). In this context, inhibitors of pump functioning may have broader 
spectrum than competitive inhibitors, but their use in vivo is unlikely because they would 
also affect eukaryotic transporters.  

 Most of the inhibitors described in this manuscript were recently tested in vitro by small 
companies or isolated laboratories, which have limited preclinical and clinical capabilities. 
While the major pharmaceutical firms have reduced their interest in antibacterial 
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therapeutics [179], they acknowledge interest in this approach to rejuvenate the activity of 
current antibiotics [38,45]. Corroborating this idea, Mpex Pharmaceuticals recently licensed 
the Microcide Pharmaceuticals efflux portfolio, and one of the leads is in Phase Ib clinical 
trial as an aerosol drug candidate in cystic fibrosis (CF) patients (see “news” page on the 
web site of the company at <http://www.mpexpharma.com>). This encouraging news 
suggests the interest of extensive in vivo studies aimed at evaluating the pharmacological 
properties, safety profile, and efficacy in models of infection by resistant organisms of other 
efflux pumps inhibitors. 
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