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Originally described in bacteria, drug transporters (or efflux
pumps) are now recognized as major determinants in the
modulation of the accumulation and efflux of antibacterials in
virtually all cell types, from prokaroytes to superior eukary-
otes. Transport proteins are in fact major cellular products.
Based on sequence similarities with known transporters and
with proteins possessing at least two transmembrane seg-
ments, it has been calculated that 15–20% of the genome of
Escherichia coli or of Saccharomyces cerevisiae may code
for this type of protein.1 At least 300 gene products are pro-
posed to transport known substrates effectively, out of which
∼20–30 transport antibiotics and other drugs.2 Figure 1, on
this basis, identifies the main groups of transporters (also
referred to as superfamilies) that have been shown so far to act
effectively upon antibiotics. Two of these superfamilies
[major facilitator superfamily (MFS) and ATP binding cas-
sette superfamily (ABC)] span the prokaryote–eukaryote
boundary, but with specific members in each kingdom. It
must be remembered, however, that most transporters have
been identified only very recently, so that the discovery of
many more families, with both prokaryotic and eukaryotic
members, would not be surprising in the near future. Efflux
pumps usually consist of a monocomponent protein with
several transmembrane spanning domains (most often 12 of
them). However, in Gram-negative bacteria, which are pro-
tected by an outer membrane, efflux transporters can be
organized as multicomponent systems, in which the efflux
pump located in the inner membrane works in conjunction
with a periplasmic fusion protein and an outer membrane pro-
tein (Figure 2).3 This first review focuses on the impact for
antibiotic treatments of efflux pumps found in prokaryotes,
while the companion paper4 examines those characterized in
eukaryotes.

Why antibiotic transporters?

The first description of antibiotic transporters in bacteria
resulted from the study of resistance to tetracyclines in the
early 1980s.5 Soon after, several transporters were identified
based on the same approach, i.e. through the unravelling of
resistance mechanisms towards various classes of anti-
bacterials, including successively the macrolides,6 the
fluoroquinolones,7 the β-lactams8 and, more recently, the
aminoglycosides.9 This led eventually to the concept that
efflux must be considered as a common and basic mechanism
of resistance, along the same lines as, and perhaps even
more ubiquitous than, target modification or production of
antibiotic-inactivating enzymes. The reason why antibiotics
are subject to efflux may simply be that most of them share the
necessary basic structural features for effective recognition.
These determinants are most often the simple combination of
an amphipathic character and the presence of an ionizable
function. In this context, antibiotics appear as occasional sub-
strates of transporters aimed at protecting cells from exo-
genous, diffusible molecules. Other examples of potentially
harmful substrates include biocides10 or bile salts for Entero-
bacteriaceae.11 But efflux pumps can also be viewed as
machines developed by cells to extrude poorly diffusible or
toxic endogenous molecules from the cytosol, and the latter
may constitute some of the natural substrates of these trans-
porters. Using Pseudomonas aeruginosa PAO1 wild-type
and its efflux mutants, it was shown with a model of epithelial
cells and of murine endogenous septicaemia, that most
mutants demonstrated significantly reduced invasiveness and
decreased capacity to kill mice. Invasiveness was restored by
complementation of the mutants with the wild-type genes, or



*Corresponding author. Tel: +32-2-764-73-78; Fax: +32-2-764-73-73; E-mail: vanbambeke@facm.ucl.ac.be



Leading article

1056

Figure 1. Occurrence and distribution of antibiotic transporters in prokaryotic and eukaryotic cells. The nomenclature is based on the classification
of Saier.2 The transporters are grouped in so-called superfamilies (three-component nomenclature; bold characters), six of which are found in
prokaryotes and eukaryotes. Within each superfamily, only those families (four-component nomenclature; normal characters) transporting anti-
biotics are shown. OAT and MET are not found in prokaryotes.
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by adding culture supernatants from epithelial cells infected
with wild-type.12 Along the same lines, the quorum-sensing
auto-inducer 3-oxo-C12-homoserine lactone, which plays a
key role in P. aeruginosa pathogenesis, is regulated by the
MexAB–OprM efflux system.13 These effects can, however,
be counterbalanced by the reduced fitness that may occur as a
consequence of the extrusion of bacterial metabolites,14 or by
a decreased intracellular concentration of auto-inducing viru-
lence factors,15 as shown in MDR-overproducing mutants of
P. aeruginosa. Finally, combining both self-protecting and
physiological roles, transporters also export bacterial toxins16

as well as antibiotics from antibiotic producers.17

What are the main antibiotic transporters?

Table 1 shows, in a systematic fashion, the antibiotic trans-
porters positively identified in some important human patho-
gens. For each of them, we present the necessary elements of
identification and a non-exhaustive list of antibiotics trans-
ported. Many other efflux pumps are suspected to exist, based
either on phylogenetic comparison with established trans-
porters, or on phenotypical characterization (see 18 for a
recent reference). Examination of Table 1 shows three major
features. First, several transporters recognize very different
classes of antibiotics. This holds especially true for resistance
nodulation division (RND) superfamily transporters and is
the basis for the cross-resistance of several bacteria to appar-
ently structurally unrelated drugs (substituting one class of
antibiotics by another will not be a satisfactory answer to
resistance detected in these isolates). Secondly, a given spe-
cies (typically P. aeruginosa and E. coli) may express quite
different drug transporters, leading again to multiresistant
phenotypes. Thirdly, a given antibiotic may be recognized by
different pumps, and some classes such as tetracyclines,

macrolides, fluoroquinolones and chloramphenicol appear as
quasi-universal substrates. However, individual drugs, within
a given class, may show specific behaviour with respect to
recognition by transporters (see Table 2). This has raised pas-
sionate debate concerning apparently closely related mol-
ecules, but may simply illustrate the critical impact of
apparently minor chemical modifications in the recognition
process of substrates by transporters.

Impact on resistance

Generally speaking, efflux mechanisms confer a low to mod-
erate level of resistance only (1- to 64-fold increase in
MIC),19,20 so that their clinical relevance has been ques-
tioned.21 The following points need, therefore, to be carefully
taken into consideration. First, the intrinsic (or natural) resist-
ance of many bacteria to antibiotics depends on the consti-
tutive or inducible expression of active efflux systems. A
typical example is P. aeruginosa, which was thought for a
long time to be poorly susceptible to a large range of anti-
biotics of different classes because of the relative imperme-
ability of its outer membrane to drugs. However, the simple
disruption of the gene coding for the MexB pump dramati-
cally increases the susceptibility of P. aeruginosa to β-lactams,
tetracyclines, fluoroquinolones and chloramphenicol.22 Like-
wise, disruption of the gene coding for MdrL in Listeria
monocytogenes causes a 10-fold decrease in the MIC of cefo-
taxime,23 which suggests that the intrinsic resistance of
L. monocytogenes to cephalosporins may be due to other
mechanisms besides the existence of penicillin-binding pro-
teins with low affinity towards this subclass of β-lactams.
Finally, the poor susceptibility of Haemophilus influenzae to
macrolides may result partly from the presence of an efflux
mechanism24 (in addition to the well known effect of acidity
on the activity of macrolides, a CO2-containing atmosphere is
necessary to grow this bacteria). This suggests fresh avenues
for the design of new macrolides with enhanced activity
against H. influenzae.

Secondly, concomitant expression of several efflux pumps
in a given bacterial species may lead to apparently ‘high level’
resistance phenotypes when considering the shared sub-
strates. This has been observed in Gram-negative bacteria, in
which the multicomponent efflux pumps of the RND super-
family transport antibiotics from the cytosolic leaflet of the
inner membrane to the periplasmic space, and the single com-
ponent efflux pumps of the MFS superfamily promote efflux
from this space to the external medium.25

Thirdly, efflux may also cooperate with other resistance
mechanisms to confer not only high level but also broad-
spectrum resistance. For example, the high intrinsic penem
resistance of P. aeruginosa results from the interplay between
the outer membrane barrier, theactive efflux system MexAB–
OprM and AmpC β-lactamase.26 In E. coli, expression of

Figure 2. Topology of multicomponent (left) and monocomponent
(right) efflux pumps as they can be found in the MFS, RND and ABC
superfamilies and in the MFS, RND, ABC and MATE superfamilies,
respectively. Multicomponent efflux pumps are specific to Gram-
negative bacteria, since their particular organization allows extrusion of
antibiotics directly into the extracellular medium. Arrows show directions
of antibiotic transport. MFS, RND, SMR and MATE are energized by
ion gradients and ABC by ATP hydrolysis.
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Table 1. Main efflux transporters as observed in clinically important human pathogens with their corresponding antibiotic substratesa

Pathogen Transporter
Super- 
family TC numberb

Antibiotics

β-lactams Q

peni ceph carb m-bac
inhib
β-ase FA AG Tet OX ML SG LM CHL RIF NAL FQ SM TMP

S. aureus NorA7 MFS 2.A.1.2.10 +58 +58

TetK-L59 MFS 2.A.1.3.6 +31

MdeA60 MFS +60

MsrA6 ABC 3.A.1.121.1 +6

S. pneumoniae MefE61 MFS +61

PmrA62 MFS +62

TetK-L MFS +31

Streptococcus 
pyogenes

MefA63 MFS 2.A.1.21.2 +63 +63

L. monocytogenes MdrL23 MFS –23 +23 –23 –23 +23 +23

Lde64 MFS +64

TetK-L MFS +31

Mycobacterium 
tuberculosis

Mmr65 SMR 2.A.7.1.2. +65

TetK-L MFS +31

DrrB66 ABC 3.A.1.105.1 +66

Enterococcus spp. Mef?67 MFS +67

TetK-L MFS +31

EmeA68 MFS +68 +68 +68

Lsa69 ABC +69 +69

H. influenzae TetB, K MFS +31

AcrB-like RND +70 +70

Neisseria 
gonorrhoeae

MtrD71 RND 2.A.6.2.5 +72 +72 +72 +72 +72 +72

Salmonella spp. AcrB73 RND +74 +74 +74 +74 +74 +74 +74 +74 +74

TetA-D MFS +31

FloR75 MFS +75

Shigella 
dysenteriae

TetA-D MFS +31

E. coli EmrE76 SMR 2.A.7.1.3 +77 +77 +77

YdhE78 MATE 2.A.66.1.3 +79 +79 +79

TetA-E80 MFS 2.A.1.2.4 +31

Bcr81 MFS 2.A.1.2.7 +79 +82

MdfA83 MFS 2.A.1.2.19 +79,83 +83 +83 +79,83 +83 +79,83 +79

YceL84 MFS 2.A.1.2.21 +79

YidY84 MFS 2.A.1.2.22 +79

EmrB85 MFS 2.A.1.3.2 –85 –85 +85 –85

YebQ84 MFS 2.A.1.3.17 +79
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class-C β-lactamase confers resistance to first- and second-
generation cephalosporins, and expression of pump AcrB
causes resistance to most penicillins. The global result is that
the organism becomes susceptible only to third- or fourth-
generation cephalosporins.20 A more indirect but probably
very effective mode of cooperation is exemplified by the
combination of DNA gyrase and/or topoisomerase IV muta-
tion and efflux in the development of resistance to fluoro-
quinolones. Whereas single target mutations confer only a
low level of resistance, the reduction in the intrabacterial
concentration of fluoroquinolones through expression of one
or several efflux pumps may result in MICs exceeding break-
points (see 27 for a recent example). Thus, resistant strains
from clinical sources28 often display a combination of multi-
ple mutations in the target genes and overexpression of efflux
transporters.29 More critically, the exposure of the targets to
insufficient drug concentrations will favour the selection of
mutants. Thus, constitutive expression of efflux pumps acting
on fluoroquinolones probably explains the high frequency of
mutations leading to resistance in Gram-negative bacteria.
This has been particularly well demonstrated for levofloxacin
and P. aeruginosa. Disruption of the genes of three RND
pumps not only brings the MIC from 0.25 to <0.02 mg/L, but,
most strikingly, reduces the frequency of appearance of first-
step mutants from 2 × 10–7 to <10–11.19 It must, however, be
emphasized that all pumps must be inactivated simultane-
ously to obtain such an effect, since the lack of activity of one
can be easily compensated for by overexpression of others
with overlapping spectra.30

Fourthly, antibiotics can serve as inducers and regulate the
expression of some efflux pumps at the level of gene tran-
scription or mRNA translation, by interacting with regulator
systems.31 Transporters may also become overexpressed as a
result of mutations occurring in these regulators3 (this
mechanism may be the predominant one for resistance of
P. aeruginosa to fluoroquinolones in cystic fibrosis
patients).32 More importantly, global regulation may be
involved,33 causing the overexpression of several independ-
ent genes (regulons).34 For instance, the mar regulon in E. coli
may control not only the expression of AcrB, but probably
also that of other drug-specific transporters and porins,
together with numerous other proteins involved in stress
responses (see 35 and the references cited therein). Worry-
ingly, mutations in regulator genes might even result in con-
stitutive expression of several efflux pumps, causing multiple
resistance.

Fifthly, resistance by efflux can be easily disseminated. In
several cases, the genetic elements encoding efflux pumps
and their regulators are located on plasmids (such as Tet trans-
porters in Gram-positive bacteria), or on conjugative or
transformable transposons located either on plasmids (Tet
transporters also, but in Gram-negative bacteria), or in the
chromosome (e.g. mef genes in Streptococcus pneumoniae).36
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Importantly, efflux-mediated resistance mechanisms can
spread between phylogenically very distant species. This is
exemplified by the macrolide-mediated efflux, which has
moved not only among streptococci but also to Gram-
negative bacteria.37 Co-transfer with genes for other resist-
ance mechanisms may also take place if these are present
together on large mobile genetic elements.

Strategies for the future

Efflux mechanisms should now be taken fully into account in
the evaluation of new antibiotics as well as for the future of
chemotherapy in the long term. At the level of the clinical
microbiology laboratory, suspicion of efflux as a cause of
resistance ideally should be confirmed either phenotypically
or genotypically so that cross-resistances during therapy can
be anticipated. However, phenotypic characterization of
efflux may prove difficult or impossible in multiresistant iso-
lates that have several mechanisms. The clear-cut situation of
macrolides and streptococci, in which efflux-based resistance
is limited to 14- and 15-membered macrolides,38 may be
unique. Conversely, demonstrating resistance to a large variety
of unrelated agents can suggest the presence of wide-
spectrum transporters (see 39 for an example with clinical
isolates). Unfortunately, several of the antibiotic substrates
recognized by many efflux pump systems (such as chloram-
phenicol, tetracyclines or trimethoprim) are no longer tested
in clinical laboratories because of lack of immediate thera-
peutic interest. More genotypic characterization could yield
important information for surveillance studies. For instance,
PCR has been used successfully to identify unambiguously
efflux-based resistance mechanisms to macrolides,40 tetra-
cyclines41 and fluoroquinolones,29 and fingerprinting has
allowed the spread of the corresponding resistant clones to be

followed.32 Further development of new genotypic tests to
improve the characterization of efflux mechanisms in clinical
isolates would be welcome in this context (see 42 for first
attempts in this direction).

Moving to the evaluation of new antibiotics, exploring
their potential recognition by typical efflux transporters must
now be in the forefront of their pre-clinical and clinical assess-
ment. All other pharmacological and toxicological properties
being equal, the aim here will be to favour the selection of
derivatives that are poor substrates of the efflux pumps and
that do not induce their overexpression. Table 2 illustrates the
relative affinity of current and newly introduced antibiotics
for efflux transporters, and reveals that most recent antibiotics
in each class are less well recognized than those that are older.
The development of pump inhibitors as adjuvant therapy also
represents an interesting area for drug discovery, similar to
how β-lactamase inhibitors brought new life to β-lactams.43

This approach, however, appears very challenging because of
potential effects on efflux transporters also present in eukary-
otic cells. It must be emphasized that most inhibitors currently
available display strong pharmacological activities in eukary-
otic cell systems and are therefore unusable in clinical prac-
tice. Typical examples include reserpine,44 omeprazole,45

phenothiazines,46 sertraline,47 verapamil48 and sidero-
phores.49 It is therefore essential to develop molecules not
only designed specifically to inhibit prokaryotic transporters,
but also with some distance from molecular structures close to
those of drugs. Another difficulty is that the pharmacokinetic/
dynamic properties of the pump inhibitors will need to match
closely those of the companion antibiotic. Only three main
categories of compound have been uncovered so far.50 The
first group comprises compounds specifically raised against
the Tet transporters for tetracyclines (namely tetracycline
derivatives substituted in position 13 and probably acting as

Table 2. Relative affinities of antibiotics for efflux pumps

aDepending on the efflux pump.
bRanking corresponding to the degree of lipophilicity of the side chain.
cLow affinity substrate of MexD in P. aeruginosa and AcrB and AcrF in E. coli.116,117

dLow affinity substrate of a still unidentified efflux transporter in S. aureus.118

Affinity for efflux pumps

Antibiotic class high variablea low References

Penicillinsb nafcillin, cloxacillin, penicillin G carbenicillin 74

Cephalosporinsb cefalotin, cefotaxime, ceftriaxone cefazolin, cephaloridin 74

Carbapenems meropenem imipenem 98

Macrolides 14- and 15-membered 16-membered, ketolides 107–109

Tetracyclines tetracycline minocycline glycylcyclinesc 31,110,111

(Fluoro)quinolones ciprofloxacin, norfloxacin ofloxacin, 
levofloxacin

cinafloxacin, gatifloxacin, 
gemifloxacin, moxifloxacin,d 
garenoxacin

19,112–115
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competitive inhibitors,51 and a non-competitive inhibitor built
on an indan nucleus).52 The second group is represented by a
family of flavonolignans derived from a natural alkaloid from
Onopordon corymbosum.53 These molecules inhibit the NorA
transporter of Staphylococcus aureus. As flavones are also
known to inhibit the eukaryotic P-glycoprotein, considerable
lead optimization studies will be needed to obtain safe com-
pounds. The third category is represented by peptides acting
upon the RND transporters of P. aeruginosa.54 These inhibi-
tors selectively improve the activity of antibiotics that are
substrates of the MexB efflux pump (quinolones, macrolides,
chloramphenicol, and to a lesser extent, tetracycline or car-
benicillin),55 which suggests a high level of specificity.56

They do not interact with the eukaryotic P-glycoprotein. A
desirable step forward would be to consider the design of
wider spectrum inhibitors acting on pumps present in both
Gram-positive and Gram-negative bacteria and belonging to
different phylogenetic families. Prudent use of these inhibi-
tors will, however, be essential, to avoid fast emergence of
resistance to them, which will most probably also emerge.
Laboratory mutants of Bacillus subtilis have already been iso-
lated with resistance to the inhibitory activity of reserpine.57
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