Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

3-Alkenyl-2-azetidinones as fatty acid amide hydrolase inhibitors

Allan Urbach^a, Giulio G. Muccioli^b, Eric Stern^b, Didier M. Lambert^b, Jacqueline Marchand-Brynaert^{a,*}

^a Unité de chimie organique et médicinale, Université catholique de Louvain, Bâtiment Lavoisier, Place Louis Pasteur n° 1, 1348 Louvain-la-Neuve, Belgium ^b Unité de chimie pharmaceutique et de radiopharmacie, Université catholique de Louvain, Ecole de pharmacie, Avenue E. Mounier n° 73, 1200 Bruxelles, Belgium

ARTICLE INFO

ABSTRACT

Article history: Received 16 April 2008 Revised 19 May 2008 Accepted 20 May 2008 Available online 24 May 2008

Keywords: Azetidinone Enolate alkylation FAAH inhibition MGL inhibition

Cannabis possesses multiple and beneficial therapeutic properties, exploited for centuries in the traditional Chinese and Indian medicine (analgesic, sedative, febrifuge, antidepressant, ...). Nowadays, cannabis extracts and derivatives are mainly known for their illicit uses as psychotropic agents inducing unacceptable adverse effects. However, Δ^9 -tetrahydrocannabinol (Δ^9 -THC), the main psychoactive component of cannabis (Fig. 1, structure A), is able to prevent nausea and vomiting, to stimulate appetite, to decrease intraocular pressure, to provoke bronchodilatation, amongst many other activities.¹ The cloning of two cannabinoid receptors mediating the pharmacological effects of Δ^9 -THC, about 15 years ago,² stimulated the search of endogenous ligands of these receptors. At the present time, several endocannabinoids³ have been disclosed: they are fatty acid amides and esters, such as arachidonoylethanolamide (AEA, anandamide) (Fig. 1, structure **B**) and 2-arachidonoylglycerol (2-AG) (Fig. 1, structure **C**).

The endocannabinoids which share pharmacological properties with the exogenous ligand Δ^9 -THC offers new opportunities in therapeutic strategies avoiding undesirable side effects.³ Nevertheless, the effective medical use of AEA and 2-AG is severely hampered by their rapid inactivation due to enzymic degradation. Two major enzymes are involved in catabolic regulation of these two lipid messengers, namely fatty acid amide hydrolase (FAAH)⁴ and monoglyceride lipase (MGL),⁵ respectively.

FAAH is a serine hydrolase which does not exert its activity through the Ser-His-Asp triad as commonly observed in this family, but through the unusual Ser-Ser-Lys triad: Ser 241 acts as the

A series of novel 2-azetidinones (β-lactams) bearing short alkenyl chains at C3 and N1 have been pre-

pared and evaluated in vitro as inhibitors of human FAAH. Compound 9c (1-(4'-pentenoyl-3-(4'-pente-

nyl)-2-azetidinone)) featured an IC₅₀ value of 4.5 μ M and a good selectivity for FAAH versus MGL.

nucleophile and Lys 142 serves as general acid/base catalyst, while the role of Ser 217 is still unclear.^{4a} FAAH inhibitors are expected to bring therapeutic advances in fields like the control of pain and anxiety, the treatment of inflammatory conditions, or sleep disorders.⁶

© 2008 Elsevier Ltd. All rights reserved.

MGL (also named monoacylglycerol lipase) is also a serine hydrolase featuring the catalytic triad Ser122-Asp239-His269. Its study and the search of inhibitors, comparatively to FAAH, are quite recent in the literature.⁷

To date, two main classes of FAAH inhibitors with therapeutic potential have been disclosed: aromatic carbamates and ureas⁸ that irreversibly acylate the active site serine and α -keto-oxazole

Figure 1. Cannabinoid derivatives.

^{*} Corresponding author. Tel.: +32 10 472740; fax: +32 10 474168. *E-mail address:* jacqueline.marchand@uclouvain.be (J. Marchand-Brynaert).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.05.081

compounds⁹ that form reversible hemiketals with the active site serine. Other heterocyclic structures have been investigated,¹⁰ but surprisingly, 2-azetidinone derivatives (also named β -lactams) have never been reported as potential inhibitors of FAAH, though this family of highly reactive amides is well known to inhibit serine enzymes¹¹ of bacterial or mammalian origins. For instance, penicillin and cephalosporin antibiotics are inhibitors of D, D-peptidases of the bacterial cell wall (Fig. 2, structures **D** and **E**),¹² penam sulfones are inhibitors of β -lactamases, the bacterial defence enzymes (Fig. 2, structure **F**),¹² and monocyclic azetidinones are inhibitors of human leukocyte elastase (Fig. 2, structure **G**).¹³

In this paper, we describe the synthesis of a series of monocyclic 2-azetidinones equipped in positions C3/N1 with short alkenyl chains and their evaluation in vitro as potential inhibitors of FAAH and MGL human enzymes. Inhibitors featuring an electrophilic carbonyl as warhead to interact with the active serine Ser 241, such as α -keto-oxazoles, are usually substituted with two lipophilic side

E (Cefuroxime) **G** (3,3-diethyl-2-azetidinones)

Figure 2. Azetidinone inhibitors of serine proteases.

chains of various lengths. We selected relatively short alkenyl chains (limited to 5-carbons) to decorate the azetidinone scaffold, essentially for performing preliminary biochemical evaluations with compounds easily prepared and well soluble in the assay medium. The alkene motifs offer the possibility to further functionalise the molecules (chain lengthening by olefin metathesis reaction, for instance). Considering the published crystal structure of rat FAAH bound to methyl arachidonyl fluorosphosphonate (MAFP) as a model,^{9d} we assumed that C3 or/and N1-substituted azetidinones could fit into the active site, with the appended groups located in the lipophilic pocket, depending on the initial positioning of the β -lactam core.

The previous publications related to this kind of β -lactam functionalisation mainly concern the positions C4 and N1, in particular for the construction of 1,4-fused rings by olefin metathesis reaction, and utilize 4-acetoxy-2-azetidinone as starting material.¹⁴ Our strategy towards 1,3-substituted 2-azetidinones makes use of the commercially available parent compound **1**, considering two synthetic routes: (I) N1 alkylation followed by C3 alkylation and (II) C3 alkylation followed by N1 functionalisation. As detailed below, only the second route allowed to reach the C3 structural variety required for preliminary biochemical evaluations. Scheme 1 summarises our synthetic results.

β-Lactam **1** was *N*-alkylated with allyl bromide (**a**), 1-butenyl bromide (**b**) and 1-pentenyl bromide (**c**) under solid–liquid phase transfer conditions. The method of Tarling^{14a} (KOH, 18-crown-6, benzene, 20 °C, RBr) gave poor yields of *N*-substituted azetidinones **2**, while the method of Zbigniew¹⁵ (Scheme 1, step i) furnished **2a** and **2c** in 55% and 50% yield, respectively, after chromatography. But only 5% yield of **2b** could be isolated because elimination occurred in the case of 1-butenyl bromide. Other conditions were tested without success (LiHMDS, THF, -50 °C; NaH, DMF, 0 °C). The enolate of **2c** was formed by deprotonation with LDA at low temperature;¹⁶ quenching with allyl bromide led to 1-(4'-pentenyl)-3-(2'-propenyl)-2-azetidinone (**3a**) in good yield (route I, step

Scheme 1. Synthesis of 1,3-substituted azetidinones. Reagents and conditions: (i) alkenyl bromide, K₂CO₃, Bu₄NBr catal., CH₃CN, 80 °C, 15 h; (ii) LDA, THF, -78 °C, 0.5-1 h; then alkenyl bromide, -78 to 20 °C, 15 h; (iii) ^tBuMe₂SiCl, DIEA, CH₂Cl₂, 20 °C, 24 h; (iv) CsF, MeOH, 20 °C, 2 h; (v) acid chloride, pyridine, CH₂Cl₂, 20 °C, 4 h.

ii). But no product could be obtained when treating the enolate of 2c with 3-butenyl or 4-pentenyl bromides. We found that the C3 alkylation of β -lactam **1** (route II) was more conveniently performed after N-protection by silvlation. tert-Butyldimethylsilyl derivative 4 (Scheme 1, step iii) was prepared as usual, then enolate was formed (LDA, THF, -78 °C) and reacted with the alkenyl bromides. In all cases, a mixture of mono- and bis-alkylated products 5 and 6 was recovered, in variable relative amounts, depending on the quantities of base (1 to 1.5 equivalents) and bromide (1.2 to 5 equivalents) used. Compounds 5 and 6 could be separated by column chromatography: the best yields of 5a, 5b, 5c and 6c were obtained with 1.1 equivalents of LDA/1.1 equivalents of bromide and 1.5 equivalents of LDA/5 equivalents of bromide, respectively (route II, step ii). Compounds 6a and 6b (step ii bis) were also prepared by a second alkylation of 5a and 5b in the same conditions (51% and 79% vields). From our experiments, it appeared that *N*-alkyl azetidinone (**2c**) behaves differently from *N*-silyl azetidinone (4). In the first case, the corresponding lithium enolate, in THF solution, is a poor nucleophile (reaction only with allyl bromide, the best electrophile) and a weak base (absence of bis-alkylation product resulting from the deprotonation of **3** by the enolate of 2). In the second case, the lithium enolate of 4 is more reactive (quenching with all the tested electrophiles) and also more basic (formation of bis-alkylation product in the presence of only one equivalent of LDA). In fact, amide resonance is strongly disfavoured by a *N*-silyl substituent and azetidinone **4** thus looks like a cyclobutanone. TBDMS deprotection was performed quantitatively by treatment with cesium fluoride¹⁶ (Scheme 1, step iv). Disappointingly, attempts to N-alkylate 7c under the phase-transfer conditions of route I were unsuccessful. Therefore, we decided to introduce a N1 side chain via the reaction with an acid chloride as powerful electrophile. All mono-alkenyl azetidinones 7a, b and **c** were easily *N*-acylated with 4-pentenoyl chloride in the presence of pyridine (Scheme 1, step v) to furnish compounds **9a**, **b** and **c** in good yields after chromatographic purification. Azetidinones 2-9 were characterised by IR, ¹H NMR, ¹³C NMR and HR-Mass spectroscopies. Table 1 summarises the ¹³C NMR data: typically the azetidinone C2 carbonyl gave a signal at 167–169 ppm for N-alkyl derivatives (2-3), at 173–178 ppm for N-silyl derivatives (4-6), at 171–174 ppm for N–H derivatives (7–8) and at 167–168 ppm for *N*-acyl derivatives (**9**). In the ¹H NMR spectra, H3 proton of monosubstituted derivatives (3, 5, 7 and 9) gave a multiplet at 3.20-3.30 δ ; the two H4 protons appeared as two doublets of doublets with a geminal coupling constant of 5.6-6.6 Hz and the vicinal cis and trans coupling constants of 6.0-6.6 Hz and 1.6-3.0 Hz, respectively. The chemical shifts of H4-cis and H4-trans were 3.20-3.30

Tal	ble	1	
-----	-----	---	--

¹³ C NMR data	(125 MHz,	CDCl ₃ ,	ppm)
--------------------------	-----------	---------------------	------

 δ and 2.85–2.95 δ for compounds **3**, **5** and **7**. The *N*-acyl substituent of **9** induced a deshielding of about 0.3 δ (H4-*cis* at 3.64-3.67 δ and H4-*trans* at 3.24–3.28 δ). The 3,3'-bis-substituted azetidinones (**6**, **8**) showed a singlet at 2.97–3.04 δ for the two H4 protons. (see Supplementary data for complete characterisation).¹⁷

In conclusion, by using 1-TBDMS-2-azetidinone (**4**) as starting material (route II) instead of 2-azetidinone (**1**, route I), we were able to prepare C3-substituted azetidinones bearing alkenyl chains of various lengths (see Supplementary data for organic synthesis complete description). The compounds **5–9**, which issued from this synthetic approach were tested against the target enzymes.

The novel azetidinones have been evaluated in a competitive hydrolytic assay of human FAAH (overexpressed in Escherichia coli) and human MGL (overexpressed in *E. coli*) versus their [³H]-radiolabelled natural substrates AEA and 2-OG, respectively.^{18,19} The results reported in Table 2 show that all compounds 5-9 interact with FAAH and MGL and that **9b** and **9c** behave as good FAAH inhibitors. Except for 5a and 5b, azetidinones were more active against FAAH than against MGL. Inhibition effect of the C3 geminally substituted product was less efficient in comparison to that of the C3/N1-disubstituted product (compare 6c with 5c, and 8c with 7c; see Table 2, entries 3-4 and 7-8). The best inhibitors of FAAH were the 3-(4'-pentenyl)-2-azetidinones (5c, 7c and 9c; see Table 2, entries 3, 7 and 11) versus their lower homologs (5a, b, 7a, b and 9a, b, respectively). Moreover, the presence of a N1 acyl side chain greatly enhanced the inhibitory activity (series 9 compared to **7** and **5**). IC₅₀ values were determined for the most active compounds. In particular 3-(4'-pentenyl)-1-(4'-pentenoyl)-2-aze-

Table 2	
Biochemical	evaluation

Entry	Compound	FAAH	IC ₅₀	MGL	IC ₅₀	Selectivity
		%inhibition ^a	(µM)	%inhibition ^a	(µM)	
1	5a ^b	43.6 ± 4.4		77.5 ± 5.2		
2	5b ^b	49.5 ± 1.3		69.9 ± 8.9		
3	5c ^b	76.9 ± 2.4		54.9 ± 4.7		
4	6c	25.2 ± 6.2		10.3 ± 11.8		
5	7a ^b	56.6 ± 6.0		15.6 ± 8.7		
6	7b ^b	48.0 ± 1.7		8.1 ± 14.7		
7	7c ^b	80.9 ± 3.4		54.9 ± 6.0		
8	8c	80.5 ± 3.8	259 ± 28	36.3 ± 9.1		
9	9a ^b	96.5 ± 0.2	61.8 ± 2.9	46.4 ± 3.5		
10	9b ^b	102.9 ± 5.7	21.9 ± 0.5	58.1 ± 7.3	817 ± 151	37
11	9c ^b	100.7 ± 2.5	4.5 ± 0.2	62.1 ± 7.0	657 ± 89	146

^a Inhibition of enzymic activity (% of control) at 10^{-3} M; n = 3.

^b Compound tested as racemic mixture.

Compound	C2	C3	C4	3-side chain	1-side chain
2a	167.3	38.7	36.7	1	44.6; 118.2; 131.7
2c	167.4	38.9	36.5	Ì	26.8; 31.1; 41.4; 115.4; 137.2
3a	169.6	48.4	44.5	32.6; 116.9; 134.3	26.9; 31.1; 41.0; 115.4; 137.2
4	172.7	39.0	36.7	1	-6.1; 18.6; 26.0
5a	175.0	50.5	42.4	32.8; 116.7; 134.3	-6.2; -6.3; 18.3; 25.8
5b	175.7	51.1	43.4	28.5; 31.0; 115.1; 137.5	-6.2; -6.3; 18.3; 25.9
5c	175.9	51.6	43.3	26.1; 28.7; 33.4; 114.7; 138.2	-6.2; -6.3; 18.4; 25.9
6a	176.9	58.9	45.5	37.8; 118.3; 133.4	-6.1; 18.3; 25.9
6b	177.7	59.6	47.6	28.6; 32.5; 114.8; 138.1	-6.0; 18.6; 26.3
6c	178.2	59.9	47.4	23.6; 32.7; 33.9; 114.6; 138.2	-6.2; 18.2; 25.9
7a	171.4	50.2	41.0	32.4; 116.9; 134.1	1
7b	172.1	50.5	41.8	27.8; 30.9; 115.1; 137.2	Ì
7c	172.2	51.2	41.7	26.1; 28.1; 33.3; 114.7; 138.0	1
8c	174.5	59.8	46.1	23.5; 32.1; 33.8; 114.7; 138.1	l l
9a	167.2	47.6	41.9	32.1; 117.9; 132.8	27.8; 35.6; 115.6; 136.3; 170.3
9b	167.8	47.8	42.7	27.6; 30.9; 115.5; 136.3	27.8; 35.5; 115.9; 136.6; 170.3
9c	167.9	48.6	42.8	26.1; 28.0; 33.3; 115.2; 137.6	28.1; 35.8; 115.6; 136.4; 170.4

Figure 3. Azetidinone inhibitors of FAAH and MGL, 9b and 9c.

tidinone (9c) featured an IC₅₀ of 4.5 μ M and a good selectivity for FAAH versus MGL; the lower homolog 9b was slightly less active and less selective (Fig. 3) (see Supplementary data for graphical representation of inhibition activity of all tested compounds).

The potential activity of selected lipophilic β-lactams against representative serine enzymes has been further assayed. Compounds 9b and 9c were found to be inactive against Porcin Pancreatic Elastase (PPE), while compound 9a totally inhibited PPE at 100 µM concentration^{20,21} (see Supplementary data for graphical representation of PPE inhibition by 9a at 100, 50 and 25 μ M). Compounds 5a and 7a, the N1 TBDMS-protected and N1-unsubstituted precursors of 9a, respectively, were not inhibitors of PPE. Lastly, the activity of compound **9a** was evaluated against four bacterial enzymes, Penicillins-Binding Proteins (PBPs), namely R39, PBP2a, PBP2x and PBP5.²² A weak inhibition could be observed for R39 only, a low molecular weight DD-carboxypeptidase.²³

Thus compound 9c (3-(4'-pentenyl)-1-(4'-pentenoyl)-2-azetidinone) emerged from this screening as a promising 'hit' for the discovery of novel FAAH inhibitors.²⁴ This β -lactam derivative is active at the micromolar level and selective for FAAH versus other serine enzymes. Studies are in progress to improve the activity and to determine the mode of action at the atomic level.

Acknowledgements

This work was supported in part by the Belgian Program on Interuniversity Poles of Attraction (PAI 5/33), and the Fonds National de la Recherche Scientifique of Belgium. The authors are indebted to G. Labar for kindly providing them with human FAAH and human MGL. We thank the CIP (Centre d'Ingénierie des Protéines) of the University of Liège (Belgium) for the evaluations on bacterial enzymes. We thank S. Gharbi for technical assistance and S. Devouge for assistance in manuscript preparation. G.G.M. is a postdoctoral researcher of FRS-FNRS (Belgium). J. M.-B. is a senior research associate of FRS-FNRS (Belgium).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2008.05.081.

References and notes

- 1. (a) Hollister, L. E. Pharmacol. Rev. 1986, 38, 1; (b) Zlas, J.; Stark, H.; Seligman, J.; Levy, R.; Werker, E.; Breuer, A.; Mechoulam, R. Nature 1993, 363, 214; (c) Pertwee, R. G. Br. J. Pharmacol. 2006, 147, S163.
- 2. (a) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.; Bonner, T. I. Nature 1990, 346, 561; (b) Pertwee, R. G. Pharmacol. Ther. 1997, 74, 129; (c) Balas, L.; Cascio, M. G.; Di Marzo, V.; Durand, T. Bioorg. Med. Chem. Lett. 2006, 16.3765.
- (a) Vandevoorde, S.; Lambert, D. M. Chemistry & Biodiversity 2007, 4, 1858; (b) 3. Di Marzo, V.; Bifulco, M.; De Petrocellis, L. Nat. Rev. Drug Disc. 2004, 3, 771; (c) Pacher, P.; Batkai, S.; Kunos, G. Pharmacol. Rev. 2006, 58, 389; (d) Petrocellis, L. D.; Cascio, M. G.; Marzo, V. D. Br. J. Pharmacol. 2004, 141, 765.

- 4. (a) Labar, G.; Michaux, C. Chemistry & Biodiversity 2007, 4, 1882; (b) Lichtman, A. H.; Hawkins, E. G.; Griffin, G.; Cravatt, B. F. J. Pharmacol. Exp. Ther. 2002, 302, 73
- (a) Saario, S. M.; Laitinen, J. T. Chemistry & Biodiversity 2007, 4, 1903; (b) 5. Sugiura, T.; Kishimoto, S.; Oka, S.; Gokoh, M. Prog. Lipid Res. 2006, 45, 405.
- (a) Kimball, F. S.; Romero, A. F.; Ezzili, C.; Garfunkle, J.; Rayl, T. J.; Hochstatter, D. G.; Hwang, I.; Boger, D. L. J. Med. Chem. 2008, 51, 937. and references cited therein; (b) Lambert, D. M.; Fowler, C. J. J. Med. Chem. 2005, 48, 5059.
- Cisneros, J. A.; Vandevoorde, S.; Ortega-Gutiérrez, S.; Paris, C.; Fowler, C. J.; Lopez-Rodriguez, M. J. Med. Chem. 2007, 50, 5012.
- For recent examples, see: (a) Sit, S. Y.; Conway, C.; Bertekap, R.; Xie, K.; Bowin, C.; Burris, K.; Deng, H. Bioorg. Med. Chem. Lett. 2007, 17, 3287; (b) Ahn, K.; Johnson, D. S.; Fitzgerald, L. R.; Lümatta, M.; Arendse, A.; Stevenson, T.; Lund, E. T.; Nugent, R. A.; Nomanbhoy, T. K.; Alexander, J. P.; Cravatt, B. F. Biochemistry 2007, 46, 13019; (c) Alexander, J. P.; Cravatt, B. F. J. Am. Chem. Soc. 2006, 128, 9699; (d) Myllymäki, M. J.; Saario, S. M.; Kataja, A. O.; Castillo-Melendez, J. A.; Nevalainem, T.; Juvonen, R. O.; Järvinen, T.; Koskinen, M. P. J. Med. Chem. 2007, 50, 4236; (e) Muccioli, G. G.; Wouters, J.; Scriba, G. K. E.; Poppitz, W.; Poupaert, J. H.; Lambert, D. M. J. Med. Chem. 2005, 48, 7486.
- (a) Romero, F. A.; Du, W.; Hwang, I.; Rayl, T. J.; Kimball, F. S.; Leung, D.; Hoover, H. S.; Apocada, R. L.; Breitenbucher, J. G.; Cravatt, B. F.; Boger, D. L. J. Med. Chem. 2007, 50, 1058; (b) Hardouin, C.; Kelso, M. J.; Romero, F. A.; Rayl, T. J.; Leung, D.; Hwang, I.; Cravatt, B. F.; Boger, D. L. J. Med. Chem. 2007, 50, 3359; (c) Kimball, F. S.; Romero, F. A.; Ezzili, C.; Garfunkle, J.; Rayl, T. J.; Hochstatter, D. G.; Hwang, I.; Boger, D. L. J. Med. Chem. 2008, 51, 937; (d) Timmons, A.; Seierstad, M.; Apodaca, R.; Epperson, M.; Pippel, D.; Brown, S.; Chang, L.; Scott, B.; Webb, M.; Chaplan, S. R.; Breitenbucher, J. G. Bioorg. Med. Chem. Lett. 2008, 18, 2109.
- 10. (a) Michaux, C.; Muccioli, G. G.; Lambert, D. M.; Wouters, J. Bioorg. Med. Chem. Lett. 2006, 16, 4772; (b) Muccioli, G. G.; Fazio, N.; Scriba, G. K. E.; Poppitz, W.; Cannata, F.; Poupaert, J. H.; Wouters, J.; Lambert, D. M. J. Med. Chem. 2006, 49, 417.
- 11. (a) Page, M. I.; Laws, A. P. Tetrahedron 2000, 56, 5631; (b) Page, M. I. In The Chemistry of β-Lactams; Blackie Academic and Professional: London, 1992.
- 12. (a) Jastrebski, J. T. B. H.; Van Koten, G. Penicillins. In Comprehensive Heterocyclic Chemistry (CHC II); Katritzky, A. R., Ed.; Elsevier: Oxford, UK, 1995; p 623. Chapter 1.20; (b) Brulé, C.; Marchand-Brynaert, J. Penicillins. In Comprehensive Heterocyclic Chemistry (CHC III); Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford, UK, 2008; p 173. Chapter 2.03; (c) Hubschwerlen, C. β-Lactam antibiotics. In *Comprehensive Medicinal Chemistry*; Taylor, J. B., Triggle, D. J., Eds., 2nd ed.; Elsevier: Oxford, UK, 2007; p 479. Chapter 7.17.
- (a) Bernstein, P. R.; Edwards, P. D.; Williams, J. C. Prog. Med. Chem. 1994, 31, 59; (b) Finke, P. E.; Shah, S. K.; Fletcher, D. S.; Ashe, B. M.; Brause, K. A.; Chandler, G. O.; Dellea, P. S.; Hand, K. M.; Maycock, A. L.; Osinga, D.; Underwood, D. J.; Weston, H.; Davies, P.; Doherty, J. B. J. Med. Chem. 1995, 38, 2449; (c) Moreira, R.; Santana, A. B.; Iley, J.; Neres, J.; Douglas, K. T.; Horton, P. N.; Hursthouse, M. B. J. Med. Chem. 2005, 48, 4861.
- 14. (a) Tarling, C. A.; Holmes, A. B.; Markwell, R. E.; Pearson, N. D. J. Chem. Soc. Perkin Trans. 1 1999, 1695; (b) Barrett, A. G. M.; Baugh, S. P. D.; Gibson, V. C.; Giles, M. R.; Marshall, E. L.; Procopiou, P. A. Chem. Commun. 1996, 2231. 15 Zhigniew K · Park S H Synlett 1996 895
- Baldwin, J. E.; Adlington, R. M.; Gollins, D. W.; Schoffied, C. J. Tetrahedron 1990, 16. 46.4733.
- 17. Representative protocols: synthesis of 3-(4'-pentenyl)-1-(4'-pentenoyl)-2azetidinone (9c)
- C-Alkylation of 1-(tert-butyldimethylsilyl)-2-azetidinone: a solution of LDA (1.15 equiv) in THF (20 mL) was added dropwise, at -78 °C, to a solution of 4 (registry number: 117505-49-4) (1 g, 5.4 mmol) in THF (25 mL, 0.215 M solution) under argon atmosphere. After 30 min of stirring at -78 °C, 5bromopentene (1.15 equiv) was added. The mixture was allowed to slowly reach room temperature. After 15 h at 20 $^\circ C$, aqueous NH4Cl (10%, 50 mL) was added. The mixture was extracted with $CH_2C\bar{l}_2~(2\times~50\,mL)$ and the organic layer was washed with water (3 \times 30 mL), dried over MgSO4 and concentrated under vacuum. Flash chromatography on silica gel (cyclohexane-EtOAc, 5:1) yielded 3-(4'-pentenyl)-1-(tert-butyldimethylsilyl)-2-azetidinone (5c) as a yellow pale oil (500 mg, 37%) and 3,3'-bis-(4'-pentenyl)-1-(tertbutyldimethylsilyl)-2-azetidone (6c) as a yellow oil (400 mg, 23%).

Characterisation of **5c**: $R_{\rm f}$ = 0.62; IR (film) ν 2858–2930, 1747, 1641, 1320, 1195, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.20 (s, 3H), 0.22 (s, 3H), 0.94 (s, 9H), 1.48 (m, 2H), 1.60 (m, 1H), 1.78 (m, 1H), 2.06 (td, *J* = 6.7, 7.2 Hz, 2H), 2.87 (dd, *J* = 2.8, 6.0 Hz, 1H), 3.24 (m, 1H), 3.30 (dd, *J* = 6.0, 6.0, 1H), 4.95 (dd t, *J* = 1.7, 1.7, 17.1 Hz, 1H), 5.78 (dd t, *J* = 6.7, 10.5, 17.1 Hz, 1H), 5.00 (dd t, *J* = 1.7, 1.7, 17.1 Hz, 1H), 5.78 (dd t, *J* = 6.7, 10.5, 17.1 Hz, 1H); ¹³C NMR: see Table 1; HRMS (CI) calcd for C₁₄H₂₇NOSi: 254.1940, found: 254.1935. Characterisation of **6c**: $R_{\rm f}$ = 0.84; IR (film) ν 2850–2930, 1738, 1640, 1325, 1194, 837 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.20 (s, 6H), 0.93 (s, 9H), 1.39 (m, 2H), 1.48 (m, 2H), 1.58 (t, *J* = 7.7 Hz, 4H), 2.05 (m, 4H), 2.97 (s, 2H), 4.95 (dd, *J* = 1.7, 10.5 Hz, 2H); 5.00 (dd, *J* = 1.7, 17.1 Hz, 2H), 5.78 (dd t, *J* = 6.7, 10.5, 17.1 Hz, 2H); ¹³C NMR: see Table 1; MS (CI) *m/e* 322.2 (C₁₉H₃₅NOSi, M+1).

Deprotection of N1: azetidinone **5c** (230 mg, 0.91 mmol) dissolved in methanol (15 mL) was treated with CsF (2 equiv) at 20 °C during 2 h. After solvent evaporation, the residue was dissolved in EtOAc (25 mL) and washed with brine (2× 30 mL). Drying over MgSO₄ and concentration under vacuum gave crude 3-(4'-pentenyl)-2-azetidinone (**7c**) as a yellow oil(120 mg, 95% yield). Characterisation of **7c**: $R_{\rm f}$ (cyclohexane–EtOAc, 5:2) = 0.26; ¹H NMR (250 MHz, CDCl₃) δ 1.2–1.8 (m, 4H), 1.99–2.05 (m, 2H), 2.93 (dd, J = 1.6, 5.6 Hz, 1H), 3.10 (m, 1H), 3.33 (dd, J = 5.6, 6.4 Hz, 1H), 4.90 (dd, J = 1.6, 9.9 Hz, 1H), 4.95 (dd, J = 1.6, 17.0 Hz, 1H), 5.68 (dd t, J = 6.7, 9.9, 17.0 Hz, 1H), 6.53 (br s, NH); ¹³C NMR: see Table 1; MS (CI) *m/e* 140.1 (C₈H₁₄NO, M+1).

Acylation of N1: a solution of azetidinone **7c** (370 mg, 2.66 mmol) and pyridine (1.5 equiv) in CH₂Cl₂ (15 mL) was treated with 4-pentenoyl chloride (2 equiv) at 20 °C, under argon atmosphere, for 4 h. After dilution with CH₂Cl₂ (40 mL), the mixture was washed successively with 3.3 N HCI (30 mL), 10% NHCO₃ (30 mL) and brine (30 mL). The organic layer was dried over MgSO₄, concentrated under vacuum and flash chromatographed on silica gel (cylcohexane–EtOAc, 5:2) to yield the title compound **9c** as a colourless oil (490 mg, 85%). Characterisation of **9c**: $R_f = 0.6$; IR (film) ν 2859-2936, 1790, 1702, 1640, 1316 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.50 (m, 2H), 1.60–1.85 (m, 2H), 2.07 (td, J = 6.6, 7.5 Hz, 2H), 2.40 (td, J = 6.6, 7.5 Hz, 2H), 2.78 (t, J = 7.5 Hz, 2H), 3.24 (m, 2H), 3.67 (dd, J = 6.6, 6.6 Hz, 1H), 4.94–5.04 (m, 4H), 5.75 (dd t, J = 6.6, 10.5, 17.1 Hz, 1H); ¹³C NMR: see Table 1; HRMS (ESI) calcd for C₁₃H₁₉NO₂+Na: 244.1313, found 244.1314.

18. Evaluation against FAAH and MGL. Human FAAH^{19a} and human MGL^{19b} were obtained as previously reported and used to screen the compounds at 1 mM and to obtain the IC₅₀ values. Briefly, FAAH (in 165 μ L of Tris–HCl, pH 7.4) was added on ice to glass tubes containing either drugs or DMSO (10 μ L). Hydrolysis was initiated by adding 25 μ L of [³H]-AEA (50,000 dpm, 2 μ M final concentration) in Tris–HCl containing 0.1% BSA and tubes were incubated for 10 min at 37 °C. Reactions were stopped by rapidly placing the tubes on ice and adding 400 μ L of ice-cold MeOH–CHCl₃ (1:1 v/v). Following centrifugation (850g, 5 min, 4 °C) the [³H]-ethanolamine in the aqueous layer was recovered

 $(200 \ \mu L)$ and counted by liquid scintillation. Blanks were prepared (buffer instead of FAAH) and the values systematically subtracted. MGL activity was assayed in Tris-HCl, pH 8, using a similar protocol and using [³H]-oleoylglycerol (50,000 dpm, 10 μ M final concentration) as substrate.

- (a) Labar, G.; Vliet, F. V.; Wouters, J.; Lambert, D. M. Amino Acids 2008, 34, 127;
 (b) Labar, G.; Bauvois, C.; Muccioli, G. G.; Wouters, J.; Lambert, D. M. ChemBiochem 2007, 8, 1293.
- 20. Evaluation against PPE has been performed according to Ref. 21. To 2 mL of the solution of substrate (*N*-succinyl-t-alanyl-tanylt
- (a) Gérard, S.; Nollet, G.; Vande Put, J.; Marchand-Brynaert, J. Bioorg. Med. Chem. 2002, 10, 3955; (b) Gérard, S.; Gallen, M.; Dive, G.; Marchand-Brynaert, J. Bioorg. Med. Chem. 2004, 12, 129.
- (a) Macheboeuf, P.; Contreras-Martel, C.; Job, V.; Dideberg, O.; Dessen, A. FEMS Microbiol. Rev. 2006, 30, 673; (b) Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J. A.; Charlier, P. FEMS Microbiol. Rev. 2008, 32, 1.
- 23. Evaluation against PBPs has been realized at the University of Liège, Centre d'Ingénierie des Protéines (CIP), Belgium. The inhibition studies were performed at 30 °C in 50 mM sodium phosphate buffer, pH 7 and 5% dimethylformamide. For the PBP2a and PBP5, 0.5 M NaCl was added. The β -lactam **9a** (100 μ M) was mixed with the protein (0.8–2.5 μ M) and incubated for 16 h. The residual free PBP was then counter-labelled with 25 μ M fluorescein-labelled ampicillin for 45 min. After, the reaction was stopped by addition of SDS-PAGE loading buffer and incubated complexes were visualised using a Molecular Imager FX and quantified with the Quantity One software (Biorad). In each assay, background fluorescence was subtracted. Residual activities, expressed as percentages of the initial activity, were (%): PBP2a: 87 ± 7; PBP5: 104 ± 4; PBP2x: 108 ± 4; R39: 73 ± 3 (experiments done in triplicate).
- 24. As stated by H. Wang et al. in a recent paper discussing the selection of 420 compounds from more than a half million compounds (by using virtual screening with a pharmacophore model of CB1 receptor antagonists) and then the in vivo evaluation of this selected library, compounds with IC_{50} or K_i lower than 10 µM are generally considered as 'hits'. Wang, H.; Duffy, R. A.; Boykow, G. C.; Chackalamannil, S.; Madison, V. S. J. Med. Chem. **2008**, 51, 2439.