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Abstract Apoptosis plays a central role not only in the

physiological processes of kidney growth and remodeling,

but also in various human renal diseases and drug-induced

nephrotoxicity. We present in a synthetic fashion the main

molecular and cellular pathways leading to drug-induced

apoptosis in kidney and the mechanisms regulating it. We

illustrate them using three main nephrotoxic drugs (cis-

platin, gentamicin, and cyclosporine A). We discuss the

main regulators and effectors that have emerged as key

targets for the design of therapeutic strategies. Novel

approaches using gene therapy, antisense strategies,

recombinant proteins, or compounds obtained from both

classical organic and combinatorial chemistry are exam-

ined. Finally, key issues that need to be addressed for the

success of apoptosis-based therapies are underlined.
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Abbreviations

AIF Apoptosis induced factor

Akt/PKB Serine/threonine kinase/protein kinase B

ATP Adenosine triphosphate

Bid Bcl-2 interacting domain

BIP Bax inhibiting peptide

Cdk2 Cyclin-dependent kinase 2

c-FLIP FLICE-like inhibitory protein

DIABLO Direct IAP binding protein with low pI

DR 4/5 Death receptor 4/5

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

ER Endoplasmic reticulum

ERK Extracellular signal-regulated kinase

ESRD End-stage renal disease

FasL Fas ligand

FLICE Fas-associated-death domain like

IL-1b-converting enzyme

GADD Growth arrest and DNA damage-inductible

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

G-CSF Granulocyte colony-stimulating factor

HEK Human embryo kidney cells

HGF Hepatocyte growth factor

HK-2 Human proximal tubular epithelial cell line

HSP70 Heat shock protein 70

IAP Inhibitors of apoptosis proteins

IGF-1 Insulin-like growth factor 1

IRE-1a Inositol-requiring enzyme 1alpha

JNKs Janus kinases
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LLC-PK1 Lilly laboratories, culture-pig kidney type1

cells

MAPKs Mitogen-activated protein kinases

MCT Murine cortical tubular cells

MDCK Madin-darby canine kidney cells

MDR Multi drug resistance

MEK MAPK kinase

NF-jB Nuclear factor jB

NRK-52E Normal rat kidney epithelia

OAT Organic anion transporter

OCT Organic cation transporter

Omi/

HtrA2

High temperature requirement protein A2

PgP P-glycoprotein

PI3K Phosphatidylinositol-3-kinase

PIDD p53-induced death domain

PLA2 Phospholipase A2

RAP Receptor associated protein

RMIC Renal medullary interstitial cells

ROS Reactive oxygen species

RPT Rat proximal tubular cells

RPTC Rabbit proximal tubular cells

siRNA Small interfering RNA

Smac Second mitochondria-derived activator

of caspase

TGF Transforming growth factor

TNF Tumor necrosis factor

TNFR Tumor necrosis factor receptor

TRAIL TNF-related apoptosis inducing ligand

TUNEL Terminal deoxynucleotidyl transferase

(TdT)-mediated dUTP-biotin nick-end

labeling

VEGF Vascular endothelial growth factor

Cells continuously receive survival or death signals from

the local microenvironment [1]. In the kidney, death

through apoptosis is a physiological process in nephro-

genesis as well as in maintenance of tissue homeostasis.

When developing as a response to drug exposure, apoptosis

may, however, become a double-edged weapon. While it

leads to tissue loss and organ dysfunction, it may also

contribute to clear off intoxicated cells and to control

compensatory proliferative responses. A large number of

drugs are known to induce renal cell apoptosis in cell

culture or in vivo (Table 1), and this is associated with

renal dysfunction. In general, apoptosis occurs at low

levels of drug exposure, whereas necrosis requires higher

doses [2–4]. This makes the study of apoptosis particularly

relevant for the clinical usage of drugs, since they are

supposed to be used at doses and for durations of treatment

that do not cause necrosis in the experimental animal. It

must be emphasized that a small amount of detectable

apoptosis in kidney epithelium can correspond to a large

level of cell death, given the short half-life of apoptotic

cells which are easily cleared and lost in the urine [5].

In this review, we present a general overview of the

main cellular and molecular mechanisms of apoptosis

observed in the kidney, describe three well characterized

and clinically relevant examples of drug-induced renal cell

apoptosis, and discuss the state of the art of apoptosis

modulation in nephrotoxic kidney injury.

Molecular mechanisms and cellular pathways

of apoptosis in the kidney

Generally speaking, there are two phases in apoptosis: a

commitment and an execution stage [6–8]. Apoptosis can be

initiated via two major pathways as illustrated in Fig. 1. The

intrinsic pathway involves subcellular organelles such as

mitochondria, lysosomes or endoplasmic reticulum,

whereas the extrinsic pathway, also called death receptor

pathway, involves the activation of death receptors in

response to ligand binding. Both pathways lead to the acti-

vation of specific proteases called the executioner caspases

(caspase-3 and -7), which results in the characteristic mor-

phological signs of apoptosis that include membrane

blebbing, cell shrinkage, and DNA fragmentation. Neph-

rotoxic drugs seem to act mainly through the intrinsic

pathway, and it will be described in more detail (Fig. 2).

Intrinsic pathway

Specific sensors initiate this pathway and information is

relayed from one organelle to another. Most signals trig-

gered by nephrotoxic drugs eventually converge to the

mitochondrial pathway [9] (Table 2). Mitochondrial injury

leads to the release of caspase activators, such as cyto-

chrome c, inhibitors of antiapoptotic responses such as

Smac/DIABLO and Omi/HtrA2, and caspase-independent

promoters of cell death such as Apoptosis-Inducing Factor

(AIF), which is abundant in renal epithelium [10]. This

process is under the tight control of several factors [11, 12].

Proteins of Bcl-2 family, which are either pro- or anti-

apoptotic, function as ‘‘molecular integrators‘‘ for the

mitochondrial pathway. Upon exposure to death signals,

the pro-apoptotic proteins Bax and Bak undergo structural

modifications [13] and alter the mitochondrial membrane

integrity to cause the release of cytochrome c (anchored

through cardiolipin at the outer surface of the mitochondria

inner membrane [14, 15]) and the other pro-apoptotic

molecules [16]. Bax is found all along the nephron but

absent from the glomerulus [17]. Bax and Bak can be

activated by BH3-only proteins (Bid, Bad, Bim, Bmf, Bik,
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Table 1 Apoptosis induced by nephrotoxic drugs and selected nephrotoxicants: in vitro and in vivo models

Compound In vitro In vivo

Cell type References Species References

Acetaminophen Mouse PTC [174]

Adriamycin Renal tubular cells [175] Rat [176]

Aminoglycosides MDCK [95] Rat [94]

LLC-PK1 [2]

Amphotericin LLC-PK1 / RMIC [157] Rat [157]

Anaesthetic Rat [177]

Cadmium WKPT [178] [178]

Cidofovir Human tubules/HK-2 [144]

Cisplatin Mouse PTC [71, 171, 180]

Mouse CDC [181]

Cyclosporine A MDCK [182] Rat: subcortical and

juxtamedullary

kidney sections

[179]

Tubular and interstitial cells [107]

Dichloroacetic acid Rat: proximal tubules [183]

Diclofenac Mice: proximal and

distal tubular cells

[184]

3,4-Dideoxyglucosone-3-ene Mouse PTC [33]

Doxorubicin Rat: tubular epithelial

cell and distal tubule

cells

[175]

Endotoxins Human tubular

epithelial cells

[185, 186] Mice (Fas–/–,

TNFR1–/–

TNFR2–/–)

[187]

C3H/HeJ Mice [188]

Fluoroquinolones Human: distal tubular

cells

[189]

Mercuric chloride Cultured rat proximal

tubular cells (WKPT)

[178]

LLC-PK1 [190]

Microcystin Rat: kidney cortex and

medulla

[191]

Ochratoxin A PRK [192]

OK [193]

NRK-52E [193]

Oxalate MDCK [194]

Radio-contrast agents MDCK [195–197]

LLC-PK1 [197, 198]

Rapamycin Mouse PTC [199]

Statins Cultured murine

tubular cells

[200]

Thiazides Rat: distal convoluted

tubular cells

[201]

Zoledronate Human: tubular

epithelial cells

[202]
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Puma, Noxa and others [18]) behaving as sensors of cell

stress. Reactive oxygen species (ROS) and caspases, espe-

cially caspase-2, may also lead to mitochondrial injury [19].

Once in the cytoplasm, cytochrome c interacts with an

adaptor molecule, Apaf-1 and procaspase-9, forming the

apoptosome that promotes the activation of caspase-9.

Members of the inhibitor of apoptosis proteins family

(IAPs) inhibit caspases and pro-caspases and, are them-

selves controlled by other mitochondrial proteins (Smac/

DIABLO and Omi/HtrA2) [20]. Moreover, HSP 70 inhib-

its nuclear AIF accumulation by binding it in the cytosol

[21], and reduces both AIF and cytochrome c release from

the mitochondria through still incompletely established

processes. Part of the cytoprotective effects of HSP70, as

well as HSP27, is related to their ability to inhibit key

effectors of the apoptotic machinery at the pre- and post-

mitochondrial level [22]. In contrast, the antiapoptotic

proteins Bcl-2 and Bcl-xL bind to pro-apoptotic members of

the Bcl-2 family, and impair the activation of Bax/Bak,

thereby maintaining mitochondrial membrane integrity. In

the adult human kidney, the expression of Bcl-2 is detected

in the parietal epithelium of the Bowman’s capsule and

all along the nephron from the proximal tubules to the col-

lecting ducts [23, 24]. The expression of Bcl-xL is lower in

S1 segment of the proximal tubules than in S3 segment and

the distal tubules [25]. In parallel to the Bcl-2 family

of proteins, glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), a pleiotropic enzyme overexpressed in apoptosis

and in several human chronic pathologies, may also play a

critical role in cytochrome c and AIF release [26].

The role of the proapoptotic Bcl-2-like proteins in drug-

induced apoptosis has been well documented, such as for

instance for gentamicin in LLC-PK1 cells [27], for cyclo-

sporine A in MCT cells [28], and for cisplatin in animal

models [29]. This role has been confirmed (i) by microin-

jection experiments with the central domain of Bax (Bax-

syn) or of Bak (Bak-syn) [30], (ii) by antagonizing Bax

with inhibiting peptides such as BIP (Bax Inhibiting Pep-

tide, derived from Ku 70 [31]1), (iii) by preventing the

synthesis of Bax with antisense oligodeoxynucleotides [28,

33], or (iv) in Bax-deficient mice [29]. The impairment of

Bax or Bik degradation by inhibition of the ubiquitin-

proteasome pathway also results in increased apoptosis in

cultured renal and extrarenal cells [27, 34]. In this context,

bortezomib, a dipeptidyl boronic acid, which inhibits the

26S unit of the proteasome, induces rapid accumulation of

Bik [35] and stabilizes Bak and Bax [36, 37] and causes

apoptosis. Because both antiapoptotic and proapoptotic

proteins may be degraded through the ubiquitin-protea-

some pathway, this approach is challenging, especially

since inhibition of proteasome is cell and stimulus-specific.

Whereas mitochondria represent the keystone of the

apoptosis intrinsic pathway, other organelles may play a

critical role upstream of mitochondria (Table 2). Cathep-

sins may be released from lysosomes into the cytosol and

Bax/Bak

Bax/Bak

Bim/Bik

caspase 12

ROS

Smac/DIABLO
Omi/HtrA2

degradation

Bid

tBid

cyt. c
Ca++

Bad

caspase 2

lysosome

Golgi

mitochondria

proteasome

nucleus

plasma
membrane

death
receptors

death
ligands

caspases 8,10

adapter
molecules

NF-κB/IκB

DNA
fragmentation

transcription
activation *

intrinsic extrinsic

Pathways to apoptosis

c-FLIP

p53

NF-κB ind. kinase

IκB-P

NF-κB

* anti-apoptotic and
pro-apoptotic factors
in kidney

IAP

Bcl-2/BcL-XL

AIF

caspase 9

caspases 3,7

cathepsins

IRE-1α
Bim/Bik

ER

HSP70

GADD153

prot 14-3-3

Fig. 1 Overview of the main

pathways to apoptosis. Grey

arrows denote the release of a

factor from an organelle.

Factors enclosed in dotted boxes

are interacting with and/or

inserted within the membrane of

the corresponding organelle

1 Although this paper has been formally retracted based on the

discovery of image manipulations to improve the appearance of the

figures, the binding of Ku70 and of its penta-peptide derivative to

Bax, inhibiting its activation and Bax-induced cell death, have been

confirmed[32].
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A cisplatin

P-gp

Bax

Bax

caspase 9

caspase 3,7

ROS

cyt. c

Bcl-2/Bcl-XL

caspase 2

Golgi

mitochondria

nucleus

p53

DNA
fragmentation

p53

AIF

caspase 8

PUMA

p21

Bax

Bax

caspase 3

ROS

degradation

cyt. c

Bcl-2/BcL-XL
cathepsins ?

lysosomes

Golgi

proteasome

ER

ROS

mitochondria

megalin

ubiquitinated
Bax

DNA
fragmentation

B gentamicin

endosomes

caspase 9

Bax

Bax

caspases 3, 7

cyt. c

Bcl-2/BcL-XL

mitochondria

DNA
fragmentation

C cyclosporine A

P-gp

Golgi

ER

caspase 2

GADD153

IAP

FAS

ROS

increased
expression of
apoptotic
proteins

Smac/diablo
Omi/HtrA2

AIF

p53

caspase 9

Fig. 2 Main mechanisms of

apoptosis observed with three

typical nephrotoxic drugs: upper

panel (a), cisplatin; middle

panel (b), gentamicin; lower

panel (c), cyclosporine A. The

drug is symbolized by a black

filled star in each case
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can activate cytosolic pro-apoptotic proteins such as Bid

and Bax [38]. The release of cathepsins has been observed

upon activation of the p53 pathway [39] and may con-

tribute to cell death induced by chemotherapeutic drugs

[40]. The endoplasmic reticulum can initiate apoptosis

directly or through cross-talk with mitochondria or lyso-

somes. A number of endoplasmic reticulum-specific

proteins involved in drug-induced apoptosis have been

described, such as caspase-12 and IRE-1a [41]. There is

cross-talk between the endoplasmic reticulum and mito-

chondria [42]. Thus, translocation of Bim to the

endoplasmic reticulum may lead to caspase-12 activation

whereas Bax and Bak formed a protein complex with the

cytosolic domain of IRE-1a essential for its activation and

providing a physical link between members of the core

apoptotic pathway and the unfolded protein response [43].

But signals from the endoplasmic reticulum may also

activate the mitochondrial pathway. By targeting the

membrane of the endoplasmic reticulum, Bik can initiate

a release of Ca2+ which will trigger the release of cyto-

chrome c to the cytosol [44]. Growth-arrest- and DNA-

damage-inducible gene 153 (GADD153) is a transcription

factor that is expressed upon endoplasmic reticulum stress

and downregulates Bcl2 expression [45]. Endoplasmic

reticulum and lysosomes may also interact. Siomycin A

causes both lysosomal membrane permeabilization and

endoplasmic stress [46]. The Golgi complex may also

play a critical in the development of apoptosis through

stack dispersion and disassembling into tubulo-vesicular

clusters [47] and release of caspase-2. In this way,

apoptosis can be initiated upon stress from the secretory

pathway independently from mitochondria [48] or in a

dependent way [19].

Extrinsic (receptor-mediated) pathway

Proapoptotic signaling can be triggered through the bind-

ing of death ligands (such as TNF [Tumor Necrosis

Factor], Fas Ligand (FasL), TRAIL [Tumor necrosis fac-

tor-related apoptosis inducing ligand]) to their

corresponding receptors (TNFR, Fas, DR4/5), through

receptor trimerization, recruitment of adaptor proteins and

activation of the initiator caspases 8 and 10. Activated

caspase-8 then proteolytically activates caspase-3 and may

recruit the mitochondrial pathway through the cleavage of

Bid [1]. TNF and FasL are known to induce apoptosis in

stressed tubular epithelial cells [49] and may be present in

the kidney following nephrotoxic insults. Cellular FLICE

[Fas-associated death-domain-like IL-1beta-converting

enzyme]-inhibitory proteins (called c-FLIP) prevents the

activation of procaspase-8 and, thereby, protects against

death receptor-mediated apoptosis [50].T
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Caspase-dependent and -independent processes

While most nephrotoxic drugs induce caspase-mediated

apoptosis, evidence is mounting for the existence of caspase-

independent pathways, probably as a safeguard mechanism

if caspase-mediated routes would fail [7]. A typical example

of a nephrotoxic drug causing caspase-independent apopto-

sis is acetaminophen which can induce apoptosis even in the

presence of caspase inhibitors [51]. The main caspase-

independent pathway could be triggered by the release of

AIF (which may act only when caspases are inhibited or not

activated [52]), as demonstrated in cadmium-induced

apoptosis in human embryonic kidney cells [53].

Modulators of the apoptotic pathway

In addition to downstream regulators like Bcl-2 family

proteins, three important mechanisms have been reported

to regulate cell survival. These are adhesion factors (inte-

grins [54, 55], signal transducers such as protein kinases,

and transcription factors such as NF-kB and p53 [56].

Mitogen-Activated Protein Kinases (MAPK) are

upstream modulators of apoptosis. They play an important

role in the toxic injury induced by puromycin [57]. There

are three MAPK pathways. The ERK pathway generally

inhibits apoptosis while the JNK (predominantly detected

in the adult kidney [58]) and p38 kinase pathways, promote

apoptosis. Two other kinases, PI3K and Akt/PKB, also act

as modulators of the default pathway. The activated form

of Akt/PKB phosphorylates Bad, which then associates

with the chaperone protein 14-3-3 and becomes unable to

exert its pro-apoptotic function [59]. NF-kB is sequestered

in the cytosol by inhibitory proteins known collectively as

IkB. A wide range of apoptotic triggers cause the prote-

asomal degradation of I-kB [60], allowing the active

NF-kB to translocate to the nucleus. This results in an

increased transcription of a large number of proteins

involved in inflammation, apoptosis and cell proliferation.

While the net effect of NF-kB is usually anti-apoptotic

[61], NF-kB activation in kidney can also lead to stimu-

lation of apoptosis in renal cells. This is exemplified by

TRAIL-mediated NF-kB activation, which increases DR5

[death receptor 5] expression, and amplifies the apoptotic

response of TRAIL in kidney derived epithelial cells [62].

p53 is a tumor suppressor mutated in many forms of

neoplasia and known as the ‘‘the guardian of the genome’’

[63]. p53 stimulates apoptosis by promoting expression of

genes that encode apoptotic proteins. However, it also has

transcriptionally independent activities. These functions

involve a direct interaction of p53 with members of the

Bcl2 family of proteins, allowing p53 to function as a BH3-

only protein [64].

Typical examples of apoptosis induced by nephrotoxic

agents

Among the many agents listed in Table 1, we selected

three nephrotoxic agents (cisplatin, gentamicin, and

cyclosporine A) based on their illustrative behaviors of

specific pathways to apoptosis (Fig. 2) and their clinical

importance in major therapeutic areas, namely cancer,

infectious diseases and immunosuppression.

Cisplatin or the ‘‘p53-mitochondria‘‘ cross-talk

Cisplatin blocks DNA replication and gene transcription by

inducing single and double-strand DNA breaks. Nephro-

toxicity is a limiting factor for its use as anticancer agent

[65] and is related to its accumulation in kidney [66] via

both passive [67] and active transport [68–70]. Cisplatin is

also subject to MDR1/P-glycoprotein efflux [69]. Cisplatin

nephrotoxicity is characterized by a reduced renal perfu-

sion and a concentrating defect [70, 71]. Cisplatin injures

essentially the S1 and S3 portions of the proximal tubules

and the distal tubules [25, 66, 70, 72]. The nephrotoxic

potential of cisplatin is multifactorial and includes

inflammatory reactions and induction of tubular cell

apoptosis. Cisplatin recruits the Bax-mediated mitochon-

drial pathway for apoptosis and activates initiator caspases-

8, –9 and –2, and executioner caspase-3 in cultured tubular

cells and in vivo [29, 73]. Increased expression of p53

appears critical for apoptosis induction [74–76]. Normal

kidney epithelium expresses high p53 levels [77]. Avail-

able evidence points to a role of the transcriptional activity

of p53 in nephrotoxicity. PUMA and p53-induced death

domain protein (PIDD) are critical p53 targets, the

expression of which is induced by cisplatin. PUMA

antagonizes Bcl-xL via molecular interaction [78]. PIDD

promotes the activation of caspase-2, which causes the

release of AIF [79]. Inhibition of p53, caspase-2 or AIF

markedly protected from cisplatin induced apoptosis in

cultured tubular cells [79]. Although less characterized in

the particular case of cisplatin, p53 may also have non-

transcriptional actions inactivating Bcl2/BclxL and acti-

vating Bax [80]. In addition, cisplatin activates the MAPKs

ERK, JNK, and p38, both in vivo and in vitro [71, 73]. In

the context of cisplatin nephrotoxicity ERK promotes

apoptosis, contrary to its usual role in cell death regulation

[71]. p38 has no direct effect of apoptosis induction in

cultured cells [71], but its inhibition had a beneficial effect

in vivo through decreased TNF production [81]. Cisplatin

also decreases Bcl-xL [78], increases oxygen radical pro-

duction [82] and increases Cdk2 activity, which, in turn,

recruits E2F1, a key regulator that links cell cycle pro-

gression and cell death, both in vitro and in vivo [83–85].
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Cdk2 and E2F1 are key mediators of cisplatin induced

apoptosis in nephrotoxicity. Cisplatin also activates sur-

vival pathways, but these may not be sufficient to allow

survival of many cells. Thus, cisplatin activates Akt/PKB

[73] and increases the expression of p21 cyclin-dependent

kinase (Cdk) inhibitor, which inhibits Cdk2 [84]. Studies

are under way of structure-activity relationships with new

platinum derivatives with unusual selectivity and less

toxicity [86].

Gentamicin or the ‘‘lysosome-mitochondria’’ cross-talk

Clinical nephrotoxicity induced by gentamicin (the most

studied molecule in this family of the aminoglycoside

antibiotics) manifests itself clinically as non-oliguric renal

failure with a slow rise in serum creatinine and a defective

urinary concentrating ability developing after several days

of treatment. These changes are preceded and accompanied

by signs of tubular dysfunction (release of brush-border

and lysosomal enzymes, renal wasting of K+, Mg2+, Ca2+

and glucose) [87]. After glomerular filtration, a small but

significant proportion of the administered dose of genta-

micin is retained in the epithelial cells lining the S1 and S2

segments of the proximal tubules [88, 89]. The drug enters

cells by adsorptive/receptor mediated endocytosis after

binding to acidic phospholipids and megalin [90, 91], and

is found essentially in lysosomes [92, 93]. Animals treated

with low, therapeutically relevant doses of aminoglyco-

sides show both lysosomal phospholipidosis and apoptosis

in proximal tubular cells [94]. Apoptosis induced by am-

inoglycosides has been reproduced in vitro with LLC-PK1

and MDCK cells and found to be directly related to the

amount of drug accumulated by the cells [95].

Two, non-mutually exclusive, mechanisms have been

proposed to link a cytosolic distribution of gentamicin and

apoptosis. Cell culture studies, combined with the use of

membrane models, show that gentamicin destabilizes the

lysosomal membrane [2], which could result in release to

the cytosol of the drug and lysosomal constituents such as

cathepsins. In parallel, morphological studies using labeled

gentamicin suggest a retrograde transport of endocytozed

gentamicin through the Golgi complex and the endoplasmic

reticulum from which it may be released to the cytosol [96].

Quite interestingly, gentamicin introduced directly in

the cytosol by electroporation (thus bypassing the endo-

cytic route) also induces apoptosis at very low

concentrations [27]. This indicates that (a) only a small

fraction of the amount of gentamicin stored in lysosomes

(or transiting through the Golgi) needs to be released in the

cytosol to trigger apoptosis; (b) it is probably the release of

the drug itself, not of the lysosomal constituents, which is

critical. In this context, the storage of gentamicin in

lysosomes would actually appear as a protective mecha-

nism rather than a toxic event, as long as the drug is

prevented from moving from there to the cytosol.

The next steps appear rather straightforward, and

involve mitochondrial activation with the release of cyto-

chrome c and activation of caspase-3 [2], which can be

prevented by overexpression of Bcl-2 [95]. Cytosolic

gentamicin could act directly on mitochondria (polycations

are known to induce the release of soluble intermembrane

proteins from mitochondria, in vitro [97]) or indirectly

through impairment of Bax proteosomal degradation, evi-

denced by an increase ubiquitinated Bax [27], since

gentamicin binds to the b type 9 subunit of the proteasome

[98]. Gentamicin triggers the generation of ROS in vitro

[99] in the presence of polyunsaturated lipids, which could

also participate to this process.

Cyclosporine A: focus on mitochondria

Cyclosporine A is a calcineurin inhibitor which revolu-

tionized the control of graft rejection, the earliest and most

notable successes being obtained in kidney transplantation.

Ironically but sadly enough, its use quickly appeared lim-

ited by nephrotoxicity [100, 101]. Chronic cyclosporine A

nephrotoxicity, characterized by tubular atrophy and

interstitial fibrosis with progressive renal impairment,

contributes to chronic kidney allograft nephropathy (the

main cause of graft loss after 1 year), and is a risk factor

for the occurrence of end-stage renal disease (ESRD),

which is manageable but often requires chronic dialysis

[102]. Renal tubular injury is a consequence of renal

vasoconstriction and endothelial injury leading to ischemia,

as well as a direct toxic effect of cyclosporine A on tubular

epithelium [103]. Cyclosporine accumulates in renal tissue

[104], but is also a substrate of P-glycoprotein [105], and a

low P-gp expression in patients has been associated with

increased occurrence of nephrotoxicity [106].

Apoptosis has been clearly evidenced in tubular and

interstitial cells of transplanted patients with chronic

cyclosporine nephrotoxicity [106]. Tubular cell apoptosis

is also observed in animal [107–109] and cell culture

models [110, 111]. Cyclosporine-induced apoptosis is pri-

marily triggered through the mitochondrial pathway. The

generation of ROS (indirectly demonstrated in vitro in

tubular epithelial cells through the protective effect of

prednisone [112]), the reduction of Bcl-2 and IAP

expression, the increased expression of Bax (in mesangial

cells [113] and well as in vivo [109]) and the translocation

of Bax to the mitochondria (in murine tubular epithelial

cells [28]) all contribute to apoptosis induction. While

increased p53 expression has been observed in tubular cells

exposed to cyclosporine in culture and in vivo [114, 115],

Apoptosis (2008) 13:11–32 19
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no functional studies on its role in nephrotoxicity have

been performed.

In cultured tubular cells, caspases-2, –9 and –3 are

directly activated by cyclosporine [26]. The pan-caspase

inhibitor zVAD does not prevent Bax translocation to

mitochondria or cytochrome c release. By contrast, zVAD

prevents the loss of mitochondrial membrane potential

[28]. Thus, Bax causes cytochrome c release, which acti-

vates caspases which, in a positive feed-back loop, further

damages the mitochondria and leads to loss of mitochon-

drial transmembrane potential.

In addition, there is also evidence of cyclosporine-

induced endoplasmic reticulum stress, as witnessed by the

increased expression of GADD153 [28]. However,

caspase-12 was not processed, suggesting that the full

endoplasmic reticulum stress response was not recruited by

this drug, contrary to the effect of acetaminophen [169].

Cyclosporine increases Fas expression in tubular epithe-

lium in culture and in vivo [28, 109, 116]. However, this

appears to be an epiphenomenon which does not participate

in apoptosis induction since cyclosporine does not sensitize

FasL-induced apoptosis and does not increase caspase-8

activity [28].

Strategies to decrease apoptosis

Apoptosis regulators have emerged as key targets for the

design of therapeutic strategies aimed at modulating cel-

lular life-and-death decisions [117]. To be therapeutically

meaningful, interventions at this level must take into

account the fact that apoptosis, as outlined in the intro-

duction, is a ‘‘double-edged weapon’’ being beneficial in

many situations but also deleterious in others. Within the

context of the loss of parenchymal cells caused by neph-

rotoxic drugs, inhibition of apoptosis, combined with the

stimulation of the kidney regenerative processes, seems,

however, clearly beneficial [118]. We will briefly discuss

here the main strategies designed so far in this context

(Table 3), but the reader must realize that none of them

will be successful if the primary pharmacological activity

of the drugs under study is not maintained to an acceptable

level. Moreover, these strategies must include a targeting

component to make them specific to the kidney tubular

epithelial cells.

Decreasing drug accumulation in the kidney

Most nephrotoxic drugs are excreted by the kidneys and

accumulate in tubular cells to a greater degree that in other

cells, as a result of increased local drug concentration and

the presence of cell-specific transporters. Renal cellT
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accumulation of the drugs frequently does not contribute to

the therapeutic effect. As apoptosis is most often directly

related to the accumulation of a nephrotoxic drug in target

cells, reduction of its uptake seems the most rational

approach. Thus, down-regulation or inhibition of renal drug

transporters (e.g., OCT2 and OAT1) or receptors (e.g.,

megalin) has been successfully attempted for cisplatin [69,

119], cidofovir [120] or aminoglycosides [121, 122], and

has been incorporated into current clinical practice in the

case of cidofovir [120]. In a more indirect fashion, mod-

ulation of membrane fluidity could be attempted. Cilastatin

prevents the cyclosporin-induced decrease in membrane

fluidity, thus inhibiting its transport across membranes and

reducing its access to mitochondria and apoptosis [123].

Stimulation of efflux transporters could also be useful, as

low P-glycoprotein is associated with an increase toxicity

of cyclosporine. The simple increase in diuresis to foster

the rapid elimination of the nephrotoxic agents is also of

common usage with cisplatin or cidofovir [124].

Modulation of major apoptosis pathways

Targeting the modulators of the intrinsic and the receptor-

mediated pathways to apoptosis represents a promising

approach.

Because of their central role in the mitochondrial path-

way to apoptosis, pharmacological manipulation at the

level of the Bcl-2 family proteins has been attempted to

modulate cell death [125]. Thus, Bax antisense oligode-

oxynucleotides have been shown to protect from

cyclosporine A- and 3,4-dideoxyglucosone-3-ene (a major

glucose degradation product) -induced apoptosis in MCT

cells [33]. Administration of Ku-70-derived peptide, an

antagonist of Bax, has similar effect [33, 126]. Conversely,

in vivo up-regulation of Bcl-2 reduces the number of kid-

ney epithelial cells entering in apoptosis after treatment

with cisplatin [127]. In vitro overexpression of Bcl-2 pre-

vents the apoptosis of MDCK and LLC-PK1 cells induced

by gentamicin [95], and microinjection of the NH2-

terminal region of Bcl-2 (Bcl2-syn) protects LLC-PK1

cells against tacrolimus-induced apoptosis [30]. Increase of

Bcl-xL (combined with a decreased of Bax and p53 pro-

duction) induced by dexamethasone protects against

apoptosis induced by puromycin in podocytes [128]. But

more specific approaches will be needed, which could be

represented by gene silencing techniques based on small

interfering RNA (siRNAs). These have already been

developed for downregulating diverse proapoptotic genes

in cultured tubular cells [129]. In addition, systemic

delivery of decreased tubular expression of proapoptotic

proteins in renal ischemia reperfusion injury in mice,

demonstrates the feasibility of this approach in vivo [130,

131]. Recently the protective effect of the small molecule

Nutlin-3 against cisplatin-induced apoptosis was shown to

be dependent on the prevention of Bax and Bak oligo-

merization [75].

Scavenging ROS has also been a popular approach,

given their effect on lysosomal and mitochondrial pathways

to apoptosis. Various anti-oxidants have been successfully

used to prevent gentamicin and cisplatin [66, 132–134], as

well as acetaminophen toxicity [135]. Indirect strategies

have involved the inhibition of cytochrome P450 2E1, a

labile isoform involved in free radical generation [136]

considered as a source of iron in cisplatin-induced renal

injury [137], or the chelation of iron in kidney cells [138].

Inhibition of death receptor signaling represents an

additional approach to reduce apoptosis induced by neph-

rotoxic drugs, with significant results for cisplatin [139].

The protective effect exerted by pentoxifylline against

cisplatin nephrotoxicity [140] and the lower ability to

induce apoptosis for amphotericin B-arabinoglycan as

compared to amphotericin B-deoxycholate [141] could

result from inhibition of TNF-a production and ensuing

dampening of death receptor signalling.

Inhibition of caspase-dependent processes

Direct caspase inhibition is currently under active investi-

gation [8, 142], and proof-of-concept data have been

obtained in several experimental models involving cis-

platin [143], cyclosporine A [28], or cidofovir [144],

leading to the emergence two dipeptidyl pan-caspase

inhibitors (z-VD-fmk or MX-1013 [145] and 2,4-dichloro-

cbz-VD-fmk or MX 1122 [146]) and an inhibitor of

caspase-3 and –7 (IDN-8050 [147]). The existence of

tubular cell specific transporters may be used to specifically

target these inhibitors. Gene silencing approach has also

been developed to block the expression of caspase-3 and

caspase-8 in vivo in renal ischemia/reperfusion injury

models [130, 131]. A major difficulty lies however, in the

very large number of substrates of caspases ([280) which

includes proteins with important roles in cell structure,

signaling, transcription and intercellular adhesion [148].

Beyond targeting caspases with exogenous inhibitors,

modulation of their endogenous regulators such as IAPs,

c-FLIPs and Smac/DIABLO might also be attractive. This

strategy, currently in development for treatment of diseases

in which deregulation of the apoptotic cell death pathway

has been implicated, may now receive more attention for

drug-induced nephrotoxicity (e.g., inhibition of Omi/HtrA2

in cisplatin-induced apoptosis [149]). Likewise, the MEK

inhibitor U0126 decreases caspase-3 induced apoptosis by

cisplatin by impairing ERK1/2 phosphorylation and affords

significant functional and histologic protection [150].
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Survival growth factors and Cdk inhibition

The progressive unraveling the complex growth factor/

cytokine network in the kidney [151–153] may allow for

entirely novel strategies to prevent apoptosis induced by

nephrotoxic drugs.

The most successful approaches have dealt so far with

the administration of survival growth factors. Thus, exog-

enous EGF (constitutively expressed in the distal

convoluted tubules and in the thick ascending limb of

Henle [154]) accelerates renal tubular cell regeneration

after exposure to nephrotoxic drugs [155]. Intriguingly

enough, monoclonal antibodies to EGFR or pan-EGFR

inhibitors have been shown to prevent cisplatin-induced

apoptosis, perhaps because cisplatin activates EGFR in the

kidney, leading to ERK activation, a prodeath process in

this case [71]. Likewise, IGF-1, which in ischaemia/

reperfusion injury has comparable effects on apoptosis as

caspase inhibition [156], protects against apoptosis induced

by amphotericin B in the kidney [157] and cidofovir in

cultured cells [144]. HGF protects from renal ischemic

injury [158] and has beneficial effects on cidofovir-induced

apoptosis in vitro [144]. Electroporation-mediated HGF

gene transfer inhibits tubular apoptosis induced by cyclo-

sporine A in vivo [159]. The antiapoptotic signaling IGF-1,

EGF and HGF is mediated by the PI 3-kinase/Akt/PKB

pathway [156], probably converging at Bad phosphoryla-

tion [160]. Hematopoietic cytokines, such as G-CSF have

also been successfully used to protect against cisplatin-

induced acute renal injury in mice [161], and endogenous

VEGF protects against cyclosporine A-induced tubular cell

apoptosis in vivo and in cell culture [162].

Modulation of the cell cycle regulation may also be a

promising approach. Cell cycle arrest at G1/S or G2/M

phase, induced by cyclin B1 and cyclin D1 is indeed known

to contribute to apoptosis. Yet, inhibiting Cdk2 activity

decreased apoptosis in growth factor-deprived mesangial

cells [163]. In this context, sodium arsenite, which down-

regulates the expression of cyclins, has beneficial effects on

cisplatin–induced acute renal failure [83], and the Cdk

inhibitor roscovitine, recently used in vivo to prevent the

progression of polycystic kidney disease [164], has been

shown to protect cultured mouse kidney proximal tubular

cells from cisplatin-induced apoptosis [165].

Concluding remarks

The intracellular components of the apoptosis cascade have

now been largely unraveled, revealing specific cellular

factors and pathways that can be used as targets and should

enable us to design strategies aiming at controlling cell

death responses. Proteomic and microarray analysis may

soon provide us with more targets, as exemplified by what

has been shown for gentamicin [166–168], cyclosporine A

[114, 169], cisplatin [69, 167, 170–172], and cidofovir

[173]. We, however, need still to better understand the

crosstalks between different pathways, to control the cell-

specificity of the interventions, and to define optimal

therapeutic schemes. Patient’s genetic background may

also prove critical. While highly challenging, the approa-

ches outlined in this review may allow bringing promising

preclinical findings to actual therapeutic practice.
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