In vivo development of antimicrobial resistance in Pseudomonas aeruginosa strains isolated from the lower respiratory tract of Intensive Care Unit patients with nosocomial pneumonia and receiving antipseudomonal therapy

Mickaël Rioua,1, Sylviane Carbonnellea,2, Laëtitia Avraina,b, Narcisa Mesarosa,3, Jean-Paul Pirnayc, Florence Biločc, Daniel De Vosc,d, Anne Simone, Denis Piérardf, Frédérique Jacobsg, Anne Dediستh, Paul M. Tulkensa,4, Françoise Van Bambekea, Youri Glupczynskii

a Unité de Pharmacologie Cellulaire et Moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
b Coris BioConcept, Gembloux, Belgium
c Laboratory for Molecular & Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
d Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
e Laboratoire de Microbiologie, Cliniques Universitaires St-Luc, Brussels, Belgium
f Laboratorium voor Microbiologie, Universiteit Ziekenhuis Brussel, Brussels, Belgium
g Clinique des Maladies Infectieuses, Hôpital Erasme, Brussels, Belgium
h Laboratoire de Microbiologie, Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium
i Laboratoire de Microbiologie, Cliniques Universitaires UCL de Mont-Godinne, Yvoir, Belgium

\textbf{Abstract}

Pseudomonas aeruginosa causes severe nosocomial pneumonia in Intensive Care Unit (ICU) patients, with an increased prevalence of multiresistant strains. We examined the impact of the use of antipseudomonal antibiotic(s) on the susceptibility of P. aeruginosa isolated from ICU patients with clinically suspected hospital-acquired pneumonia collected in five teaching hospitals (110 non-duplicate initial isolates; 62 clonal pairs of initial and last isolates during treatment). Minimum inhibitory concentrations (MICs) were determined for amikacin, ciprofloxacin, meropenem, piperacillin/tazobactam (TZP), cefepime and ceftazidime (used in therapy) as well as five reporter antibiotics (aztreonam, colistin, gentamicin, piperacillin and ticarcillin) using Clinical and Laboratory Standards Institute (CLSI) methodology. Susceptibility was assessed according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI breakpoints. Resistance rates prior to treatment exceeded 25\% for cefepime, ceftazidime, piperacillin, ticarcillin and aztreonam (EUCAST and CLSI) and for gentamicin, TZP and colistin (EUCAST only). The highest rates of cross-resistance were noted for ceftazidime and cefepime and the lowest rate for amikacin. Mean MIC values were systematically higher in isolates from patients previously exposed (1 month) to the corresponding antibiotic. For clonal pairs, a systematic increase in MIC between initial and last isolates (significant for amikacin, cefepime, ceftazidime, piperacillin, ticarcillin and aztreonam (EUCAST and CLSI) and for gentamicin, TZP and colistin (EUCAST only). The highest rates of cross-resistance were noted for ceftazidime and cefepime and the lowest rate for amikacin. Mean MIC values were systematically higher in isolates from patients previously exposed (1 month) to the corresponding antibiotic. For clonal pairs, a systematic increase in MIC between initial and last isolates (significant for amikacin, cefepime, meropenem and TZP) was noted. There was a significant correlation between the use of antibiotics (adjusted for respective proportional use of each drug) and loss of susceptibility at the population level when using EUCAST breakpoints. The high level of resistance of P. aeruginosa in ICU patients with nosocomial pneumonia as well as its further increase during treatment severely narrows the already limited therapeutic options. Further observational studies and the development of early diagnosis for resistant isolates are warranted.

© 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

∗ Corresponding author. Present address: Unité de pharmacologie cellulaire et moléculaire, Université catholique de Louvain, UCL 73.70 Avenue E. Mounier 73, B-1200 Brussels, Belgium. Tel.: +32 2 762 2136/764 7371; fax: +32 2 764 7373.
E-mail address: tulkens@facm.ucl.ac.be (P.M. Tulkens).

1 Present address: UE 1277 Plateforme d’Infectiologie Expérimentale, Institut National de Recherche Agronomique (INRA), F-37380 Nouzilly, France.
2 Present address: Centre Communautaire de Référence pour le dépistage des cancers a.s.b.l., B-1435 Mont-Saint-Guibert, Belgium.
3 Present address: GlaxoSmithKline Biologicals, B-1300 Wavre, Belgium.

0924-8579/$ – see front matter © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
doi:10.1016/j.ijantimicag.2010.08.005
1. Introduction

Pseudomonas aeruginosa is a major nosocomial pathogen [1]. One of its preferential niches is the respiratory tract of Intensive Care Unit (ICU) patients with severe co-morbidities and receiving antibiotic treatment(s), resulting in so-called hospital-acquired pneumonia (HAP), especially in patients with impaired host defences [2–5]. The need for early appropriate antibiotic treatment in these patients [6] is substantiated by the observation of a direct correlation between increase in mortality rates and the delay with which such treatment is initiated [7–9]. *Pseudomonas aeruginosa* has a remarkable ability to develop resistance to most antimicrobial agents through multiple mechanisms. In this context, the last decades have witnessed the rapid and worldwide emergence of multidrug resistance in *P. aeruginosa*, with strains developing acquired resistance to almost all available classes of antipseudomonal antibiotics, including broad-spectrum penicillins, cephalosporins, carbapenems, aminoglycosides and fluoroquinolones (see [10] for a first historical report regarding imipenem, [11] for a review of 173 studies until the early 1990s and [9,12–14] for selected more recent reports). Acquisition of resistance is multifactorial, with mechanisms as varied as changes in membrane permeability, active efflux, production of antibiotic-degrading enzymes, and target mutations [14–17]. Infections with resistant strains are a major concern because they increase the risk of therapeutic failure [18,19] and are associated with secondary bacteraemia [20] and a considerable increase in mortality, length of hospital stay and overall health costs [9,21,22].

The emergence of multidrug-resistant (MDR) phenotypes makes epidemiological surveillance of resistance increasingly essential for the appropriate choice of empirical antibiotic regimens. Longitudinal surveillance may be even more important since there is increasing evidence that *P. aeruginosa* is capable of developing resistance to antibiotics during treatment [12,23–25].

In the present study, the level of in vitro resistance of *P. aeruginosa* isolates obtained at the onset of therapy and during treatment (clonal pairs) from patients with clinically suspected nosocomial pneumonia for which microbiological cultures strongly suggested that *P. aeruginosa* was the causative organism and who, accordingly, were treated with antipseudomonal antibiotics was assessed. A high rate of initial resistance to all antibiotics used in this set-up was observed, except for amikacin, as well as an increase in resistance of the same clonal isolates during treatment in relation to the global use of antibiotics in this population.

2. Materials and methods

2.1. Overall study design, patient selection, clinical analysis, record of antibiotic prescription and use, and time frame

The protocol of this observational study (no deviation from the standard of care of patients), as approved by the Ethical Committee of the Faculty of Medicine, Université catholique de Louvain (Brussels, Belgium), was to enrol prospectively patients with a clinical diagnosis (D0 samples) for all enrolled patients (104 patients; 110 initial isolates). For 69 patients, a second (or more) subsequent sample(s) could be obtained during the course of therapy (range 1–123 days; mean 23 days; median 17.5 days) based on the decision of the clinicians to perform such additional sampling as part of their standard of care. Bacterial identification was carried out locally using standard microbiological methods, after which isolates were frozen in cryovials at −80 °C for transfer to the co-ordinating laboratory (Université catholique de Louvain).

2.2. Sample collection

Sample collection was performed in five Belgian teaching hospitals (four in the Brussels region and one in Wallonia region) and was initiated in 2006, although most samples were collected during the period 2007–2009. A sample was obtained at the time of initial diagnosis (D0 samples) for all enrolled patients (104 patients; 110 initial isolates). For 69 patients, a second (or more) subsequent sample(s) could be obtained during the course of therapy (range 1–123 days; mean 23 days; median 17.5 days) based on the decision of the clinicians to perform such additional sampling as part of their standard of care. Bacterial identification was carried out locally using standard microbiological methods, after which isolates were frozen in cryovials at −80 °C for transfer to the co-ordinating laboratory (Université catholique de Louvain).

2.3. Isolates used for the study, reference strains, minimum inhibitory concentration (MIC) determination and susceptibility criteria

Each isolate received by the co-ordinating laboratory was checked for purity and for the presence of a single clone based on colony morphology. When needed, identification was checked using a commercial gallery (API® 20 NE; bioMérieux, Marcy l’Etoile, France) and by ability to grow at 42 °C. *Pseudomonas aeruginosa* reference strains ATCC 27853 and PAO1 [29] were used as internal quality controls. MICs were determined by geometric microdilution in cation-adjusted Mueller–Hinton broth (BD Diagnostics, Franklin Lakes, NJ) according to Clinical and Laboratory Standards Institute (CLSI) recommendations [30]. Susceptibility categorisation was assessed according to current susceptibility and resistance breakpoints of the European Committee on Antibiotic Susceptibility Testing (EUCAST) [31] and the CLSI [32].

2.4. Determination of clonality

Clonality of successive isolates obtained from individual patients was assessed by repetitive extragenic palindromic–polymerase chain reaction (REP-PCR). *Pseudomonas aeruginosa* isolates were cultivated overnight at 37 °C on Luria–Bertani agar (Sigma-Aldrich, St Louis, MO) plates. Total bacterial DNA was extracted using an UltraClean™ Microbial DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA) as detailed in the manufacturer’s protocols. REP-PCR profiles of the *P. aeruginosa* isolates were obtained using a DiversiLab™ system (bioMérieux). The PCR mixture (25 μL final volume) contained 11.5 μL of sterile distilled water, 1.25 μL of GeneAmp® 10× PCR buffer I (Applied
were retained as fulfilling the clinical and radiological criteria for the same method was used to assess the clustering of initial (D0) samples in either the much conserved clonal serotype O12 or in one of four serotype O11 clonal complexes (CCs) (F, G, H and I).

2.5. Materials for laboratory studies

Gentamicin, amikacin, ticarcillin, piperacillin, ciprofloxacin and colistin (polymyxin E) were obtained from Sigma-Aldrich (St Louis, MO); aztreonam and cefepime (Bristol-Myers Squibb, Brussels, Belgium), meropenem (AstraZeneca, Brussels, Belgium), ceftazidime (GlaxoSmithKline, Genval, Belgium) and piperacillin/tazobactam (TZP) (Wyeth Pharmaceuticals, Ottignies-Louvain-la-Neuve, Belgium) were obtained as the corresponding branded products registered for intravenous administration and complying with the provisions of purity and content of the European Pharmacopoeia. All other chemicals were of analytical grade and were obtained from E. Merck AG (Darmstadt, Germany) or Sigma-Aldrich. All culture media were from BD Diagnostics.

2.6. Statistical methods

Statistical analyses were performed using GraphPad Prism software v.4.3 and GraphPad InStat v.3.06 (GraphPad Software Inc., La Jolla, CA) and using the online statistical calculator from the Saint John’s University (Collegeville, MI) [33] for testing the normality of the MIC distributions included in each comparison [two-sample Kolmogorov–Smirnov test of normality, with calculation of cumulative probabilities (KS-P)].

3. Results

3.1. Overall study design, characteristics of samples and patients, general clinical data and treatments

Fig. 1 shows the origin and mode of selection of the isolates analysed in this study. From an initial number of 144 patients [identified as being hospitalised in the ICUs of the participating hospitals and from whom a P. aeruginosa strain had been isolated (233 non-duplicate isolates)], 104 patients (199 non-duplicate isolates) were retained as fulfilling the clinical and radiological criteria for suspicion of nosocomial pneumonia and with P. aeruginosa likely to be the main aetiological agent. From these 104 patients, 110 non-duplicate initial isolates were obtained (referred to as D0 samples). To exclude biases due to the potential presence of epidemic multiresistant clones, all isolates were genotyped by the semi-automated REP-PCR-based DiversiLab method. Whether isolates clustered in the very conserved serotype O12 clone or in one of four serotype O11 CCs (F, G, H and I), known to be the most frequently involved in outbreaks caused by MDR P. aeruginosa strains, was also analysed [34]. Only two isolates could be associated with the epidemic MDR O12 clone, but they were isolated in different hospitals at a 2-year interval. Six isolates could be associated with one of the O11 CCs, but again these were from different hospitals and obtained at several months interval.

For 69 patients, successive isolates were obtained during antipseudomonal treatment, resulting in 62 confirmed clonal pairs of an initial and a last isolate (the latter being referred to as DL samples). Patients were mostly adults (only three patients were <18 years of age and excluding them did not change the results of the analyses) and were very often ventilated at the time of the diagnosis (Table 1). For patients from whom clonal pairs could be obtained: (i) approximately one-half received monotherapy only; (ii) in general, amikacin (often for a short period only and always in combination with another antibiotic), meropenem, cefepime and TZP were preferentially prescribed; and (iii) approximately one-third of the patients died, but only one-half of them from the infection. It was also observed that in all patients, initial antibiotic dosages and schedules were (i) those recommended for severe infections and (ii) according to their pharmacokinetic/pharmacodynamic properties (see details in Table 1). Analysis of the clinical records performed independently of the attending clinicians showed no systematic bias in the way follow-up samples were obtained between patients and centres.
Table 1
General characteristics of patients, treatments and outcomes.

<table>
<thead>
<tr>
<th>Total population (N = 104)</th>
<th>Min.</th>
<th>GM</th>
<th>Mean ± S.D.</th>
<th>Median</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>1.2</td>
<td>54.1</td>
<td>60.0 ± 19.3</td>
<td>63.1</td>
<td>85.0</td>
</tr>
<tr>
<td>Ventilated (No. of patients)</td>
<td>Yes</td>
<td>74</td>
<td>No</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients with clonal pairs (n = 59)</th>
<th>Antibiotics with antipseudomonal potential (initial treatment) (no. of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMK 29</td>
</tr>
<tr>
<td></td>
<td>CIP 11</td>
</tr>
<tr>
<td></td>
<td>MEM 28</td>
</tr>
<tr>
<td></td>
<td>TZP 31</td>
</tr>
<tr>
<td></td>
<td>FEP 29</td>
</tr>
<tr>
<td></td>
<td>CAZ 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment of adequateness of initial therapya</th>
<th>No. of patients</th>
<th>No. of adequate antibiotics/total</th>
<th>% (no.) of patients with adequate therapyb based on breakpoints of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy</td>
<td>26</td>
<td>1/1</td>
<td>57.7 (15)</td>
</tr>
<tr>
<td>2 antibiotics</td>
<td>14</td>
<td>2/2</td>
<td>71.4 (10)</td>
</tr>
<tr>
<td>3 antibiotics</td>
<td>13</td>
<td>3/3</td>
<td>38.5 (5)</td>
</tr>
<tr>
<td>4 antibiotics</td>
<td>1</td>
<td>4/4</td>
<td>0.0 (0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical outcome (no. of patients)d</th>
<th>Alive</th>
<th>Dead</th>
<th>Pneumonia</th>
<th>Other causes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

GM, geometric mean; S.D., standard deviation; AMK, amikacin; CIP, ciprofloxacin; MEM, meropenem; TZP, piperacillin/tazobactam; FEP, cefepime; CAZ, ceftazidime; EUCAST, European Committee on Antimicrobial Susceptibility Testing; CLSI, Clinical and Laboratory Standards Institute. Patients with clonal pairs (n = 59).

a Typical initial treatments (for adults): AMK, 15 mg/kg every 24 h; CIP, 200–400 mg every 12 h; MEM, 2 g every 8 h; TZP, 4 g every 6–8 h; FEP, 2 g every 8–12 h; CAZ, 2 g every 8–12 h.

b Considering only patients having received one (or several) of the six antipseudomonal antibiotics examined in this study (n = 54 patients); based on the minimum inhibitory concentration of the initial isolate(s) and using EUCAST or CLSI criteria for non-resistant organisms [susceptible (S) or intermediate (I); see breakpoints in Table 2].

c Figures indicate the percentage of patients with an isolate non-resistant to the drug prescribed in the case of monotherapy, or to one, two, three or four of the antibiotics prescribed in case of multiple drug therapy.

d Assessed after 90 days following the collection date of the first isolate, except for two patients (alive) for whom the observation period was extended to 202 days and 213 days, respectively.

3.2. Susceptibilities of initial isolates

Table 2 shows the susceptibility patterns and MIC50/90 values (MICs for 50% and 90% of the organisms, respectively) of the 110 isolates obtained from the first sample (D0), with susceptibility categorisation according to EUCAST and CLSI criteria (see Supplementary Fig. 1 for a graphical representation of the cumulative MIC distribution). With respect to the main antibiotics used for therapy in the institutions surveyed, resistance (based on EUCAST breakpoints) exceeded 25% for TZP, cefepime and ceftazidime, was ca. 20% for meropenem and ciprofloxacin and was only 8% for amikacin. More than 25% of the isolates were resistant by EUCAST criteria to all other antibiotics tested for epidemiological purposes. Of note, MICs of colistin were all in a narrow range (1–4 mg/L), i.e. at the limit of the EUCAST breakpoints. There was a high level of cross-resistance between TZP on the one hand and ceftazidime and cefepime on the other hand (in ca. 75% of the TZP-resistant isolates; see Supplementary Table 1). Isolates resistant to colistin according to EUCAST were also often resistant to ciprofloxacin, meropenem, cefepime and ceftazidime (33–42% of colistin-resistant isolates).

Fig. 2 shows the impact of previous exposure (up to 1 month) to five antibiotics on the MIC of the initial P. aeruginosa isolates (ceftazidime was excluded because of the small number of patients). For all antibiotics except amikacin, MIC values were systematically higher when patients had been previously exposed to the corresponding antibiotic (with geometric means approaching or even exceeding the EUCAST susceptibility breakpoint). However, this decrease in susceptibility was statistically significant for meropenem and TZP only.

3.3. Changes in susceptibilities during exposure to antipseudomonal antibiotics and clinical outcomes

Fig. 3 shows the change in susceptibility of clonal isolates between the initial (D0 isolate) and last day (DL isolate) of treatment. The MIC of all antibiotics increased, with the differences reaching statistical significance for all antibiotics (for ciprofloxacin, by considering log2 transformed data only, probably due to the low number of samples). When assessing each clone individually, it was found that MIC values of most antibiotics increased by two- to four-fold compared with the initial value (1–2 log2 dilutions) (Fig. 4). Excluding patients with <5 days of antipseudomonal treatment (8 of 59 patients) did not modify the results. A retrospective case–control study was performed to identify whether a MIC
Fig. 2. Minimum inhibitory concentrations (MICs) of five antibiotics used in empirical antipseudomonal therapy against initial isolates, stratified between patients having either not received (no) or received (yes) the corresponding drug within 1 month prior to collection of the isolate. The scatter dot-plots show the individual values with their geometric mean and 95% confidence interval. The number of isolates was (no/yes, respectively): amikacin, 87/23; ciprofloxacin, 102/8; meropenem, 90/20; piperacillin/tazobactam (TZP), 77/33; and cefepime, 93/17. The two dotted lines in each graph show the susceptible (S) (lowest line) and resistant (R) (highest line) European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints of the corresponding antibiotic (MIC ≤ S indicates susceptible; MIC > R indicates resistant; and MIC > S and ≤ R indicates intermediate; there is no intermediate category for TZP and cefepime). For the statistical analysis, the distributions were subjected to normality test [Kolmogorov–Smirnov (KS)] and were found to be unlikely to be normally distributed when using the raw data, but normally distributed for meropenem [KS P (yes group only) = 0.65] and possibly normally distributed for TZP [KS P (yes group only) = 0.22] when using their log2 transformed data. The differences in MICs between each of the two sets of samples (no vs. yes) were therefore examined both by a parametric test [unpaired t-test (two-tailed) with Welch’s correction] and a non-parametric test (Mann–Whitney) and were found to be: (i) significant for meropenem by Mann–Whitney (P = 0.0009) when considering raw data and by both tests (P = 0.008 and 0.0009, respectively) when considering their log2 transforms (marked as *); (ii) close to significance (P = 0.0579 by Mann–Whitney both for raw and log2 transformed data) for TZP (marked as [a]), but not for the other antibiotics (P > 0.06 for both tests and both for raw and log2 transformed data).
Fig. 3. Changes in the minimum inhibitory concentrations (MICs) of five antibiotics used in empirical antipseudomonal therapy against the isolate identified before onset of therapy (D0) versus the last isolate (DL) collected from the same patient during treatment with the corresponding antibiotics and showing clonal similarity with the first isolate. The scatter dot-plots show the individual values with their geometric mean and 95% confidence interval. The two dotted lines in each graph show the susceptible (S) (lowest line) and resistant (R) (highest line) European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints of the corresponding antibiotic [MIC \leq S indicates susceptible; MIC $>$ R indicates resistant; and MIC $>$ S and \leq R indicates intermediate; there are no intermediate categories for piperacillin/tazobactam (TZP) and cefepime]. For the statistical analysis, the distributions were subjected to normality test [Kolmogorov–Smirnov (KS)] and were found to be unlikely to be normally distributed when using the raw data, but normally distributed for ciprofloxacin (KS P > 0.59), consistent with a normal distribution for meropenem, TZP and cefepime (KS P = 0.23–0.41) and unlikely to be normally distributed for amikacin (KS P (at D0) = 0.05) when using their log2 transformed data. The differences in MICs between each of the two sets of samples (D0 vs. DL) was therefore examined both by a parametric (two-tailed paired t-test) and a non-parametric (Wilcoxon matched-pair test) using both raw data and their log2 transforms. Differences were found to be significant both for raw and log2 transformed data by both tests (marked as *) for meropenem (P = 0.011 and 0.002) and TZP (P = 0.028 and 0.008) and by Wilcoxon test only (marked as a) for amikacin (P = 0.013) and cefepime (P = 0.009). For ciprofloxacin, the difference was not statistically significant (P > 0.05 for both tests) when considering raw data, but was significant (P < 0.02 for both tests) when using their log2 transforms (marked as [*]).
increase could be correlated with administration of the respective antibiotic. Whilst each antibiotic treatment was associated with an odds ratio >1 for MIC increase, this was statistically significant for amikacin only. An attempt to link the decrease in susceptibility to the duration of exposure to any specific antibiotic, or to all of them, did not yield significant results because of the low number of patients in each subgroup.

Table 3 shows that the decreased susceptibility observed during treatment caused marked increases in the proportion of isolates categorised as intermediate or resistant using EUCAST breakpoints, with all of them except amikacin exceeding a threshold of 25%. There was a significant correlation between the proportional use of each antibiotic and the loss of susceptibility at the whole population level. An apparent loss of susceptibility for colistin (based on the EUCAST breakpoint for resistance of >4 mg/L) was also documented. Cross-resistance was also increased (not shown), but this did not reach statistical significance because of the too small number of isolates.

Patients who died from the pneumonia (n = 9) (see Table 1) had not been more exposed to inappropriate antipseudomonal antibiotics during treatment [in terms of proportion of active antibiotics received (12 of 15)] than the general population.

4. Discussion

The present study represents one of the first recent efforts to document systematically the loss of susceptibility of <i>P. aeruginosa</i> isolates to antipseudomonal antibiotics when used in the treatment of clinically suspected HAP for which <i>P. aeruginosa</i> was considered the putative causative organism. Making a diagnosis of pneumonia in the ICU is notoriously difficult [36] since radiographic signs of chest infiltrates as well as microbiological analysis both lack specificity. Furthermore, collection of deep invasive specimens by bronchoscopy is often not feasible in these mechanically ventilated patients because of their unstable condition. Because this study was observational, it was not possible to obtain true quantitative cultures from all patients as this would have exceeded the current standard of care. Thus, we are left with some degree of uncertainty about the true pseudomonal nature of the infection in some episodes. However, since all enrolled patients were treated with antipseudomonal antibiotics, the main goal of our study, which was to examine the increase in resistance of <i>P. aeruginosa</i> in patients (i) from the onset of their antipseudomonal treatment and (ii) for whom clonal pairs could be isolated during this treatment was actually reached, irrespective of whether the true causative organism was <i>P. aeruginosa</i>. Potential biases due to the presence of known multiresistant epidemic clones were explicitly excluded, analysing in detail the MIC shifts occurring for clonal pairs obtained during this treatment, which could have heralded gross antibiotic failure, the converse may also be true, i.e.

Table 2

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC<sub>50/90</sub> (mg/L)</th>
<th>% non-susceptible isolates according to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EUCAST</td>
<td>CLSI</td>
</tr>
<tr>
<td></td>
<td>Breakpoint<sup>a</sup> (<S/R>±) (mg/L)</td>
<td>Breakpoint<sup>b</sup> (<S/R>±) (mg/L)</td>
</tr>
<tr>
<td>AMK<sup>d</sup></td>
<td>4/16</td>
<td>8/16</td>
</tr>
<tr>
<td>CIP<sup>d</sup></td>
<td>0.25/8</td>
<td>0.5/1</td>
</tr>
<tr>
<td>MEM<sup>d</sup></td>
<td>1/16</td>
<td>0/28</td>
</tr>
<tr>
<td>TZP<sup>d</sup></td>
<td>8/128</td>
<td>16/16</td>
</tr>
<tr>
<td>FEP<sup>d</sup></td>
<td>8/64</td>
<td>8/8</td>
</tr>
<tr>
<td>CAZ<sup>d</sup></td>
<td>4/64</td>
<td>8/8</td>
</tr>
<tr>
<td>GEN<sup>d</sup></td>
<td>2/64</td>
<td>4/4</td>
</tr>
<tr>
<td>PIP<sup>e</sup></td>
<td>8/128</td>
<td>16/16</td>
</tr>
<tr>
<td>TIC<sup>e</sup></td>
<td>64/512</td>
<td>16/16</td>
</tr>
<tr>
<td>ATM<sup>e</sup></td>
<td>8/32</td>
<td>1/16</td>
</tr>
<tr>
<td>CST<sup>e</sup></td>
<td>2/4</td>
<td>4/4</td>
</tr>
</tbody>
</table>

^a From the EUCAST website (http://www.eucast.org); breakpoints (clinical: organisms with MIC > S and ≤ R are considered intermediate).

^b From CLSI [35]; breakpoints (clinical; isolates with MIC > S and < R are considered intermediate).

^c Antibiotics used for epidemiological purposes in the context of the present study.

^d Antibiotics commonly used for antipseudomonal treatment.

^e Antipseudomonal antibiotics during treatment [in terms of proportion of active antibiotics received (12 of 15)] than the general population.

Fig. 4. Increases in the minimum inhibitory concentrations (MICs) of five antibiotics used in empirical antipseudomonal therapy between the first isolate (D0) and last isolate (DL) collected from the same individual patient. The y-axis shows the percentage of clonal pairs with a given increased MIC [from 2 × (1 log, dilution) to 512 × (9 log, dilutions) the value of the D0 isolate] out of all those showing an increased MIC (n = 18 for AMK, n = 30 for CIP, n = 30 for MEM, n = 37 for TZP and n = 30 for FEP). AMK, amikacin; CIP, ciprofloxacin; MEM, meropenem; TZP, piperacillin/tazobactam; FEP, cefepime.
patients with rapid improvement, perhaps due to antibiotic(s), are less likely to yield more than a similar sample.

The data show that (i) empirical therapy, assuming that *P. aeruginosa* is the causative organism, is often inappropriate in terms of choice of antibiotic (with pre-exposure to the same antibiotic being a detrimental element, except for amikacin) and (ii) increase in resistance occurs for all antibiotics during exposure. Treatment of pneumonia caused by *P. aeruginosa* is difficult, with mortality rates reaching 40% or higher [37]. In the present series, the mortality rate of patients for whom successive clonal samples could be obtained reached as high as 30%, with inability to control the infection being the main likely cause of death for approximately one-half of these patients. In contrast to an earlier report in which rates of primary resistance of *P. aeruginosa* in the ICU were relatively low [38], here it was found, as in another recent study [39], that MDR organisms are frequent at the very early onset of the disease. Although not designed to provide a true epidemiological estimate, the present study clearly shows that the clinician’s choice of active antibiotics has become increasingly narrow when *P. aeruginosa* is amongst the causative organisms. Thus, combined empirical therapy, although still a matter of debate [40–42], may now be the only available option to ensure a reasonable coverage in daily practice and is advocated as being essential to obtain a satisfactory response [39,43]. A first main conclusion from this study is, therefore, that significant efforts must be deployed to accelerate the early assessment of bacterial susceptibility in order to decrease the risk of therapeutic failure [44] whilst at the same time avoiding unnecessary use of wide-spectrum combinations.

As anticipated from previous recent studies [38,39,45], a clear trend towards an increase in resistance of the initial isolates during treatment was also observed. In addition, results from the present study demonstrate that therapeutic choices if *P. aeruginosa* is amongst the target organisms are narrowed down considerably when EUCAST interpretative criteria are endorsed. Although the decreased susceptibilities observed in the present study were often not statistically significant, this should not undermine the conclusions. The antibiotic doses and treatment schedules used (all at or close to the maximum values set forth in the respective labellings; see footnote a in Table 1) as well as the frequent use of combinations were actually expected to decrease the risk of emergence of resistance and/or selection of less susceptible subpopulations [16,26–28,46–48]. For obvious ethical reasons, a study in which a significant proportion of patients would be treated in a suboptimal fashion is, nowadays, impossible to design in a prospective way given what we know about optimisation of antibiotic use. Thus, the trends we see may actually be the only, but important, signals heralding the risks associated with antibiotic therapy of pseudomonal infection. Of note, short-course amikacin therapy (to minimise the risk of nephrotoxicity) may have contributed to the maintenance of its overall activity towards initial isolates.

Because *P. aeruginosa* isolates collected from hospitalised patients may originate from multiple sources, it is often difficult to distinguish between emergence of resistance within the original population from the acquisition of another less susceptible strain. Clonal analysis of successive isolates of *P. aeruginosa* was previously used to address this issue [38,49]. The method used here targets highly conserved non-coding repetitive sequences [50] and thus ensures a higher level of reliability. This study therefore provides overwhelming evidence that the decrease in susceptibility of *P. aeruginosa* observed in patients receiving antipseudomonal antibiotics may really take place within the original bacterial population. Although the precise mechanisms that cause these changes in susceptibility still need to be studied in detail, the moderate increases in MIC would suggest a predominant role of increased efflux or decreased porin permeability [51,52]. A second main conclusion of this study is therefore that close monitoring of susceptibility testing should be performed during treatment since even minor changes may result in a change of susceptibility categorisation when using EUCAST breakpoints. Based on the most likely underlying antibiotic resistance mechanism, they also may lead to cross-resistance between structurally very different antibiotic classes [52–54]. Both considerations should lead to important reassessment of the therap-

<table>
<thead>
<tr>
<th>Antibiotic Use (%)</th>
<th>Non-susceptible isolates according to:</th>
<th>Loss of susceptibility (%) during treatment and correlation with antibiotic use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EUCAST (I/R)a</td>
<td>CLSI (I/R)a</td>
</tr>
<tr>
<td>AMKc 22.0</td>
<td>1.6/11.3</td>
<td>11.3/16.1</td>
</tr>
<tr>
<td>CIPc 8.3</td>
<td>4.8/25.8</td>
<td>4.8/35.5</td>
</tr>
<tr>
<td>MEMc 21.2</td>
<td>12.9/22.6</td>
<td>14.5/35.5</td>
</tr>
<tr>
<td>TZPc 23.5</td>
<td>33.9</td>
<td>53.2</td>
</tr>
<tr>
<td>FEPc 22.0</td>
<td>40.3</td>
<td>53.2</td>
</tr>
<tr>
<td>CAZc 3.0</td>
<td>35.3</td>
<td>46.8</td>
</tr>
<tr>
<td>GENd 21.0</td>
<td>29.0</td>
<td>8.1/12.9</td>
</tr>
<tr>
<td>PIPd 35.5</td>
<td>54.8</td>
<td>0.0/24.2</td>
</tr>
<tr>
<td>TICd 87.1</td>
<td>91.9</td>
<td>0.0/37.1</td>
</tr>
<tr>
<td>ATMd 71.0</td>
<td>53.2/43.5</td>
<td>24.2/24.2</td>
</tr>
<tr>
<td>CSTd 4.3</td>
<td>37.1</td>
<td>24.6/0</td>
</tr>
</tbody>
</table>
apy, and share the capacity of becoming resistant to many emerging rapidly, in part as a consequence of prior antibiotic ther-

References

the online version, atdoi:10.1016/j.ijantimicag.2010.08.005.

Médicale (grant no. 3.597.06).

grant application to the Belgian Fonds de la Recherche Scientifique

observational study was approved by the Ethical Committee of

is Maître de Recherches of F.R.S.-FNRS.

Acknowledgments

The authors thank the research nurses of the participating institu-
tions for help in collecting clinical and antibiotic usage data as well as Virgine Mohymont, Charlotte Misson and Jonathan Gesels for dedicated technical help.

Funding: MR and NM were recipients of post-doctoral fellow-
ships of the Région Bruxelloise/Brussels Gewest (within the con-
text of the programme ‘Research in Brussels’). MR was also a Post-doctoral fellow of the Belgian Fonds de la Recherche Sci-
tifique (F.R.S.-FNRS). SC was supported by the Belgian Fonds de la
Recherche Scientifique Médicale (F.R.S.M.) (grant no. 3.597.06). FVB is Maître de Recherches de F.R.S.-FNRS.

Competing interests: None declared.

Ethical approval: The protocol of this academic, non-commercial, observational study was approved by the Ethical Committee of the Faculty of Medicine of the co-ordinating institution (Université Catholique de Louvain, Brussels, Belgium) within the context of a grant application to the Belgian Fonds de la Recherche Scientifique Médicale (grant no. 3.597.06).

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.ijantimicag.2010.08.005.

References

[3] Restrepo MI, Anzueto A. The role of Gram-negative bacteria in healthcare-

[8] Sandiumenge A, Diaz E, Bodi M, Rello J. Therapy of ventilator-associated pneu-
monia. A patient-based approach based on the ten rules of ‘The Tarragona

[10] Quin P, Dudek EJ, DiVincenzo CA, Lucka DA, Lerner SA. Emergence of resis-
tance to imipenem during therapy for Pseudomonas aeruginosa infections. J

microbial therapy: a review of antibiotic classes and patient characteristics in 173 factors. Pharmacotherapy

[12] Carmeli Y, Troillet N, Eliopoulos GM. Samore MH. Emergence of antibiotic-
resistant Pseudomonas aeruginosa: comparison of risks associated with differ-

‘extensive drug–resistant Pseudomonas aeruginosa’ in a French university hos-

ski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the

[19] Vettoretti L, Floret N, Houvenaghel B, Deplan F, Pialat P, Talon D. Emergence of
‘extensive drug–resistant Pseudomonas aeruginosa’ in a French university hos-

ski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the

[24] Craig WA. Basic pharmacodynamics of antibacterials with clinical applications

[26] Craig WA. Basic pharmacodynamics of antibacterials with clinical applications

[27] Craig WA. Basic pharmacodynamics of antibacterials with clinical applications

[28] Craig WA. Basic pharmacodynamics of antibacterials with clinical applications

[31] European Committee on Antimicrobial Susceptibility Testing. Breakpoint
tables for interpretation of MICs and zones of inhibition. version 1.1 April 2010.

