Iron oxide particles covered with hexapeptides targeted at phosphatidylserine as MR biomarkers of tumor cell death

K. A. Radermacher, S. Boutry, S. Laurent, L. Vander Elst, I. Mahieu, C. Bouzin, J. Magat, V. Gregoire, O. Feron, R. N. Muller, B. F. Jordan and B. Gallez*

The aim of the study was to evaluate the ability of a new MR contrast agent to detect cell death as a biomarker of the efficacy of anti-cancer treatment. The phosphatidylserine-targeted hexapeptide (E3) was coupled to pegylated ultrasmall iron oxide nanoparticles (USPIO) that can be detected by magnetic resonance imaging (MRI) and by electron paramagnetic resonance (EPR). USPIO binding to staurosporine-treated TLT (transplantable liver tumor) cells, evaluated by X-Band EPR, indicated twice as much binding of USPIO grafted with the E3 peptide, compared with USPIO grafted with a scrambled peptide or ungrafted USPIO. In vivo experiments were carried out using TLT cells implanted intramuscularly into NMRI mice, and tumor cell death was induced by irradiation. After intravenous injection of the different types of USPIO, the accumulation of contrast agent was evaluated ex vivo by X-band EPR, in vivo by L-band EPR and by T2-weighted MRI. In irradiated tumors there was greater accumulation of the targeted USPIO particles compared with control particles or compared with the targeted particles in untreated tissues. In conclusion, phosphatidylserine-targeting of USPIO particles can detect dying tissues. This molecular targeted system should be evaluated further as a potential biomarker of tumor response to treatment. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: MRI; EPR; molecular imaging; cell death; ultrasmall iron oxide particles

1. Introduction

The prediction of tumor response to a treatment is usually based on reductions in tumor size evidenced by morphological imaging (1). However, it can take several weeks before tumor shrinkage becomes evident. There has been considerable interest in obtaining an earlier indication of therapeutic efficacy and evaluation of tumor progression. One method to track individual tumor response for many types of cancer involves detecting a decrease in [18F]-fluorodeoxyglucose (FDG) uptake in treatment-sensitive tumors by positron-emission tomography (PET) (2). An alternative method is to image tumor cell death as a prognostic factor of treatment outcome since radiotherapy and different forms of chemotherapy have a common ability to induce apoptosis and necrosis (3–5).

There are two major types of cell death: organized and programmed cell death, called apoptosis, and chaotic injury-induced cell death, called necrosis. Early in the apoptotic process, the membrane-bound phospholipid, phosphatidylserine (PS), flips from the inner layer to the outer layer of the plasma membrane, regardless of how apoptosis is induced (6–9). Although during necrosis PS remains restricted to the inner leaflet of the plasma membrane, membrane rupture allows access to PS and PS will inevitably also be detected in necrotic cells (10). However, the ability to recognize all forms of cell death would be advantageous when monitoring the efficacy of an anti-cancer treatment.

Annexin A5 (anxA5), a PS-binding protein, has been developed into a molecular imaging probe to measure apoptosis in vitro and in vivo.
iron oxide particles (USPIO), USPIO particles have a higher relaxivity compared with ultrasmall superparamagnetic iron oxide particles (USPIO). Even though gadolinium complexes have potentially higher tumor accessibility due to their smaller size when compared with ultrasmall superparamagnetic iron oxide particles (USPIO), USPIO particles have a higher relaxivity and they also avoid potential long-term toxic effects that can occur when using gadolinium-derivatives (27).

The aim of the present study was to couple the PS-targeted E3 hexapeptide (peptide sequence: TLVSSL), previously selected by phage display (24), to pegylated USPIO particles (USPIO-PEG750). Pegylation of particles was carried out to decrease the rapid uptake of USPIO by the reticuloendothelial system, to prolong blood circulation time, and hence to increase the probability of tumor access and specific tumor targeting. Validation of this new MR contrast agent was achieved by inducing cell death in vitro and in vivo in the transplantable liver tumor model (TLT). The quantification of iron oxides bound to dying tumor cells was achieved using electron paramagnetic resonance (EPR) spectroscopy and T_2-weighted MR imaging.

2. Results

Figure 1 displays the experimental scheme to provide an overview of all experiments carried out on mice within the scope of this study.

2.1. Characterization of the contrast material

USPIO particles were first covalent-bonded to the peptide and then particles where pegylated to prolong their blood circulation time. Four or five peptides were grafted per USPIO nanoparticle.

<table>
<thead>
<tr>
<th>Intramuscular injection of TLT tumor cells</th>
<th>Tumor irradiation (x-ray, 10 Gy)</th>
<th>4 hours</th>
<th>Intravenous injection of the contrast agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>J=0</td>
<td>J=7</td>
<td></td>
<td>USPIO-PEG750-E3</td>
</tr>
<tr>
<td>7 days</td>
<td>(except for the in vivo experiment where different timings have been used)</td>
<td></td>
<td>USPIO-PEG750-E3scramble</td>
</tr>
</tbody>
</table>

The proportion of polyethylene glycol (PEG) vs iron oxide was about 1.55.

The physicochemical and magnetic properties of USPIO-PEG750-E3 and USPIO-PEG750-E3scramble are shown in Table 1. The difference in hydrodynamic size between native and conjugated nanoparticles is not significant. The magnetometry and nuclear magnetic resonance dispersion (NMRD) profiles (i.e. evolution of the longitudinal relaxivity, r_1, as a function of the magnetic field) are shown in Figs 2 and 3, respectively. The parameters obtained from the fitting of the NMRD curves were the crystal radius and the specific magnetization. The corresponding values obtained by magnetometry were lower for the mean radius and higher for the specific magnetization. These differences can be explained by the size dispersion, which influences the mean size obtained by the two methods (28).

2.2. Flow cytometry

We incubated fluorescein isothiocyanate (FITC)-anxA5 and propidium iodide (PI) with untreated (Fig. 4A), serum-deprived (Fig. 4B) and staurosporine-treated cells (Fig. 4C), and submitted them to flow cytometry analysis. In Fig. 4(A), the majority of cells were anxA5+ and PI−, indicating an intact plasma membrane and a lack of PS exposure on the outer membrane. These cells appear in the lower left quadrant of the plot, where the cells are considered viable. Treatment with staurosporine and/or serum deprivation was accompanied by an increase in the number of cells in the lower right quadrant which are stained anxA5+ and PI− considered as apoptotic cells because they have lost their membrane phospholipid asymmetry. For cell cultures grown in serum-deprived medium and treated with staurosporine for 24 h, more than 90% of the cells exhibited properties of apoptotic cells (Fig. 4C).

2.3. In vitro studies

EPR spectroscopy has already been proposed as a method of quantifying the accumulation of iron oxide inside tissues (29). Calibration curves were built from saline containing known concentrations of iron oxide particles (data not shown). Iron oxide uptake in cells was calculated in μg Fe/10⁶ cells (Fig. 5). Staurosporine-treated cells that were incubated with E3-functionalized USPIO appeared to have the highest iron oxide binding (4.10 ± 0.14, n = 5) compared with untreated control cells and also compared with apoptotic cells incubated with control particles. For cells in serum-free medium incubated with USPIO-PEG750-E3 (2.86 ± 0.27, n = 5), there was also a significantly
Table 1. Characteristic data of USPIO-PEG750-E3 and USPIO-PEG750-E3 scramble

<table>
<thead>
<tr>
<th>Method</th>
<th>USPIO-PEG750-E3</th>
<th>USPIO-PREG750-E3 scramble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydronamic size</td>
<td>24 nm</td>
<td>29 nm</td>
</tr>
<tr>
<td>Photon correlation spectroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvern system (Zetasizer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanoseries ZEN 3600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_1 at 20 MHz</td>
<td>32.9/mm/s</td>
<td>33.9/mm/s</td>
</tr>
<tr>
<td>Minispec MQ 20 spin analyzers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bruker, Karlsruhe, Germany)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_2 at 20 MHz</td>
<td>72.1/mm/s</td>
<td>70.3/mm/s</td>
</tr>
<tr>
<td>Minispec MQ 60 spin analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bruker, Karlsruhe, Germany)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_1 at 60 MHz</td>
<td>15.5/mm/s</td>
<td>15.4/mm/s</td>
</tr>
<tr>
<td>Crystal radius r</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(Bruker, Karlsruhe, Germany)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_2 at 60 MHz</td>
<td>70.4/mm/s</td>
<td>71.4/mm/s</td>
</tr>
<tr>
<td>NMRD profile Field Cycling</td>
<td>5.41 nm</td>
<td>5.71 nm</td>
</tr>
<tr>
<td>Relaxometer (Stellar, Mede, Italy)</td>
<td>52.7 Am2/kg</td>
<td>51.3 Am2/kg</td>
</tr>
<tr>
<td>Magnetometry Vibrating sample</td>
<td>4.94 nm</td>
<td>5.11 nm</td>
</tr>
<tr>
<td>MOLSPIN/Newcastle Upon Tyne, UK</td>
<td>60.29 Am2/kg</td>
<td>61.12 Am2/kg</td>
</tr>
</tbody>
</table>

Figure 2. Magnetometry of USPIO-PEG750-peptides.

Figure 3. NMRD profiles of USPIO-PEG750-peptides.
higher particle binding than with USPIO-PEG750-E3scramble (1.61 ± 0.09, n = 5) and ungrafted USPIO-PEG750 (1.54 ± 0.09, n = 5) because serum deprivation induces cell death, but to a lesser extent than staurosporine treatment. We also observed a small nonspecific binding of USPIO-PEG750 in apoptotic cells compared with control cells (Fig. 5). The amount of USPIO-PEG750 bound to apoptotic cells was, however, very low compared with USPIO-PEG750-E3.

2.4. Histology

Frozen tumor sections obtained from irradiated and untreated mice were stained by the TUNEL method and then examined by fluorescence microscopy (Fig. 6). Histological analysis confirmed the presence of larger areas of apoptosis in tumors 24 h after irradiation (Fig. 6B) when compared with nonirradiated tumors (Fig. 6A). The proportion of apoptotic regions compared with the total area of tumor tissue were 1 ± 1% for control tumors and 10 ± 3% after irradiation, this difference was significant.

A hematoxylin–eosin staining was also carried out on paraffin-embedded tumor slices to determine the necrotic fraction before and 24 h after X-ray irradiation. Here, contrarily to the quantification of apoptosis, no difference could be observed between irradiated (Fig. 6D) and control tumors (Fig. 6C). Percentages of necrotic fractions were 23 ± 8% and 23 ± 9% respectively.

2.5. Ex vivo monitoring of tumor cell death after irradiation

To determine when irradiation-induced tumor cell death reached a maximum, the iron concentration in excised tumors was measured by X-band EPR at different time points after irradiation. The accumulation of iron oxide particles in the irradiated tumors was significantly higher after administration of USPIO-PEG750-E3 compared with nonfunctionalized USPIO-PEG750 or USPIO-PEG750-E3scramble for all time delays after tumor irradiation (Fig. 7). The maximal concentration of USPIO-PEG750-E3 in the irradiated tumor was observed 7 h after irradiation (3 h after contrast media injection). The iron content per mg of tissue was 87 ± 7 ng of iron (n = 8) for mice injected with USPIO-PEG750-E3, 18 ± 1 and 18 ± 3 ng for mice injected with ungrafted USPIO-PEG750 (n = 8) or USPIO-PEG750-E3scramble (n = 7), respectively. In other words, the iron content was about five times higher in the irradiated tumor using USPIO-PEG750-E3 than when using nontargeted control particles. In nonirradiated tumors, the iron content per mg of tissue was 33 ± 6 ng, (n = 6), 17 ± 2 ng (n = 6) and 15 ± 2 ng (n = 10) for USPIO-PEG750-E3, USPIO-PEG750 and USPIO-PEG750-E3scramble, respectively. This is consistent with ‘physiological’ apoptosis occurring during the tumor development.

2.6. In vivo time course of iron accumulation in tumors

L-band EPR enabled us to detect USPIO particles directly in vivo. Consistent with our previous ex vivo experiment, the contrast...
agent was injected 4 h after irradiation. The signal intensity (SI) of iron oxide content in tumors was measured as a function of time up to 24 h after contrast media injection in order to establish a kinetics curve (Fig. 8). The only group significantly different from the others was the irradiated animals injected with the PS-targeted USPIO particles \((n = 6) \). This difference became significant 2 h after contrast agent injection and signal intensity dropped to the same level as the control groups at 24 h.

2.7. In vivo imaging

To examine whether USPIO-PEG750-E3 might serve as an MRI contrast agent, mice were imaged 4 h after tumor irradiation. MR images were obtained from irradiated or untreated (image not shown) animals before intravenous administration of USPIO-PEG750-E3 (Fig. 9 A1), USPIO-PEG750 (image not shown) or USPIO-PEG750-E3scramble (Fig. 9 B1). A signal decrease was observed in tumors 7 h after irradiation and 3 h after injection of the USPIO-PEG750-E3 contrast agent (Fig. 9 A2) compared with the mice injected with control particles (Fig. 9 B2). The use of \(T_2 \)-weighted subtraction images highlighted even better the difference in USPIO-PEG750-E3 accumulation in irradiated tumors (Fig. 9 A3) compared with USPIO-PEG750-E3Scramble (Fig. 9 B3). Negative signal enhancement data were normalized to the reference tube and calculated as a percentage of the pre-injection SI values (Fig. 10, left). The SI decreased rapidly after administration of USPIO-PEG750-E3. For irradiated animals, the signal loss was \(-45 \pm 3\% \) \((n = 6) \) 180 min after the administration of the PS-targeted contrast agent and \(-20 \pm 5\% \) \((n = 6) \) for the nonirradiated control tumors. The decrease in SI was much less pronounced in the control particle groups.

Calculated \(T_2 \) values were obtained from tumors before and 3 h after administration of USPIO-PEG750-E3, USPIO-PEG750 or USPIO-PEG750-E3scramble. The shortening of the transversal relaxation time, \(\Delta T_2 \), in irradiated tumor was about \(33 \pm 2 \text{ ms} \) when targeted particles were injected and only \(9 \pm 2 \text{ ms} \) for the nonirradiated ones.
nontargeted control particles (Fig. 10, right). Compared with the T_2 value measured on pre-contrast images the particles produced a T_2 shortening of 50 and 15%, respectively.

3. Discussion

We used a multimodal approach to validate this new contrast agent. The ultimate goal was to benefit from the superparamagnetic properties of the USPIO and to use them as a negative contrast agent in MRI because of their strong T_2 and T_2^* effects. In addition to these effects on NMR images, we also used the presence of unpaired electrons in these systems to detect and quantify the particles (29). EPR spectrometry is interesting because it is more sensitive than NMR (due to the difference in gyromagnetic ratio) and because the EPR signal intensity is directly proportional to the amount of iron oxide particles, without any confounding effect. However, EPR is generally used in vitro or ex vivo on freeze-dried samples or on thin tissue homogenates to avoid the dielectric loss observed in large aqueous samples. To correlate the dynamics observed in MRI with EPR, we used a low frequency EPR spectrometer (1 GHz) that allows a wave penetration of 1 cm inside tissue, which was typically the size of the tumors analyzed in the present study. To our knowledge, only one in vivo study has reported the detection of superparamagnetic iron oxide particles in the liver using an L-band spectrometer (30). In a previous study, EPR was used in the evaluation of targeted iron oxide particles developed for molecular imaging (recognition of E-selectin) (31). In the same study, we showed that branching of PEG polymers at the surface of USPIO produced a dramatic change in blood clearance. This increased half-life in the blood is beneficial to the potential molecular recognition of targeted sites. In another study, using phage display technology, our group at the University of Mons identified the E3 peptide as a peptidic vector for molecular imaging of apoptosis. Competition studies between annexin A5 and the E3 peptide confirmed the specificity of interaction (24). Here, we functionalized the surface of USPIO with PEG750 and the E3 peptide.

The ability of pegylated USPIO-E3 to specifically detect cell death was demonstrated in vitro, ex vivo and in vivo. A set of control experiments was performed to confirm the selectivity of recognition: control groups using cells or tumors without treatments, and nontargeted particles using USPIO-PEG750 and USPIO-PEG750-E3scramble. In vitro, the USPIO-PEG750-E3 binding was the highest in the staurosporine-treated cell group where the number of apoptotic cells present in the media was very important (90%), as observed by flow cytometry. Even so, TLT cells grown in different conditions do not show an USPIO-PEG750-E3 accumulation that is exactly proportional to the amount of apoptotic cells obtained by flow cytometry analysis. This could be explained by the fact that we used different samples of cells for these two experiments. Also some nonspecific nanoparticle adsorption to control cells could be observed during the in vitro EPR experiment. In the ex vivo study, the highest contrast media mol imaging 2010, 5 258–267 copyright © 2010 john wiley & sons, ltd. wileyonlinelibrary.com/journal/cmmi
concentration of targeted particles in tumors was measured 7 h after irradiation. This information was useful for the subsequent experiments on the in vivo time course. The results obtained ex vivo and in vivo (using both EPR and MRI) are remarkably concordant for demonstrating the selectivity of USPIO-PEG750-E3 for radiation-induced cell death compared with USPIO-PEG750 and USPIO-PEG750-E3scramble. Subtle differences observed between the different techniques can be ascribed to changes in the relative sensitivity of the techniques. For instance, ex vivo X-band EPR is about 10 times more sensitive than in vivo L-band EPR; therefore it is not astonishing that for the X-band the difference between apoptotic tumors injected with targeted particles and the control groups is more significant than the difference obtained by L-band. The effect on the MR images can be visualized directly in T2-weighted images or by measuring the changes in T2 in the tumor regions. The subtraction images are also useful to visualize the selective accumulation of targeted USPIO in irradiated tumors.

The ability of nanoparticles to pass across the leaky tumor endothelium but not across the vessels in normal tissues may prevent the interaction of targeted particles with phosphatidylserine-expressing cells in normal tissues (EPR effect). It should be emphasized that irradiation may produce changes in tumor blood flow, as demonstrated previously in the same tumor model (32,33). However, we can exclude a flow effect as the cause of the accumulation of USPIO-PEG750-E3 in irradiated tumors as we did not observe the same effect when using nontargeted USPIO, such as USPIO-PEG750 and USPIO-PEG750-E3scramble. It is well known that irradiation may also cause elevated occurrence of macrophage that can take up iron oxide particles in a nonspecific manner. However, in our case we could not observe a difference in binding of control particles for irradiated and untreated tumors, which led us to assume that USPIO-PEG750-E3 accumulation in irradiated tumors is effectively due to PS exposure. It is also known that iron oxide particles can be endocytosed by tumor cells in a nonspecific manner (34). Concerning the unspecific portion of USPIO-PEG750-E3 accumulation in treated tumors, we cannot exclude endocytosis of the contrast probe by tumor cells. However, in our study we could demonstrate that the accumulation of targeted particles in treated tumors was 2–3 times higher with targeted particles than when control particles were used. This let us assume that at least this part of particle accumulation is due to our PS-binding peptide, otherwise the control particle would have been accumulated to the same extent.

The difference in apoptosis induced by the irradiation was confirmed by the immunohistochemistry analysis of tumor samples. We cannot exclude that USPIO-PEG750-E3 particles may accumulate in necrotic areas as the membrane rupture could allow access to PS (10). However, this cannot be considered as a disadvantage as the clinical end-point, when using a cytotoxic treatment, is the ability to recognize all forms of cell death, of whatever origin.

4. Conclusion

We demonstrated that the targeting of USPIO to cell death regions can be achieved by grafting the hexapeptide, E3, to the surface of pegylated particles. EPR quantification and MR imaging studies demonstrate that E3-labeled USPIO is a promising molecular probe for imaging phosphatidylserine expression in living mice. Future works will assess the value of this new contrast agent to monitor cell death in different tumor models presenting different types of response to cytotoxic treatments. In the future, it would also be interesting to compare this biomarker to other metabolic markers such as [18F]-FDG uptake using micro-PET studies.

5. EXPERIMENTAL

All chemicals used in this study were purchased from Sigma-Aldrich (Bornem, Belgium) unless otherwise indicated.

5.1. Characterization of the contrast material

USPIO-PEG750-E3 and USPIO-PEG750-E3scramble were prepared from nanoparticles with carboxylated groups on the surface as previously described (35). USPIO particles were functionalized in two successive steps with the E3 peptide (TLVSSL) or the E3scramble peptide (SVSSLT, Neomps, Strasbourg, France), and then with an aminoPEG 750 (Fluka, Bornem, Belgium).

Hydrodynamic size measurement was carried out by photon correlation spectroscopy (PCS). The NMRD profiles were recorded at 37°C over a magnetic field range from 0.24 mT to 0.24 T. Additional longitudinal (R1) and transverse (R2) relaxation rate measurements were measured at 0.47 and 1.41 T. Fitting of the NMRD profiles using a theoretical relaxation model (36) allows determination of the crystal radius (r), the specific magnetization (M0), and the Neel relaxation time. The magnetization measurements were performed on a known amount of ferrofluid using a vibrating sample magnetometer. Fitting of the profiles according to the ad hoc theory provides several parameters, including the crystal radius (r) and the specific magnetization (M0) (37).

5.2. Cell culture

Semi-adherent TLT cells were grown in Dulbecco’s modified Eagle medium (4.5 g/l glucose without pyruvate, Invitrogen) supplemented with 10% fetal bovine serum (PAA) and 1% of penicillin/streptomycin (Invitrogen). For our experiments, cells were grown to confluence and different groups of cells were prepared: a control group, a serum-free group with cells deprived of serum for 24 h, and an apoptotic group where cells remained for 24 h in a serum-free medium containing 5 μM of staurosporine.

5.3. Flow cytometry

Flow cytometry was performed to determine whether the cell population was successfully stimulated to undergo apoptosis. A total of 5 × 10^5 cells were resuspended in binding buffer and incubated for 10 min with 1 μl of 50 μg/ml FITC-conjugated annexin A5 and with 2.5 μl of 100 μg/ml PI to detect apoptosis or necrosis (Annexin A5-FITC Apoptosis Detection Kit). Cells incubated without any fluorescent label served as a negative control. The resulting mixture was then subjected to flow cytometry. For each sample, 10 000 events were counted using a FACScan apparatus (BD Biosciences) and were analyzed by the CellQuest software (BD Biosciences).

5.4. In vitro studies

EPR spectrometry can quantify iron oxide content with high sensitivity. Measurements were performed on an X-band EPR
spectrumer (Bruker, EMX®, 9.4 GHz). A calibration curve was first established by measuring the signal intensity of different USPIO concentrations in saline. A total of 10⁶ cells were incubated in calcium-containing buffer in the presence of 4 mM of USPIO-PEG750, USPIO-PEG750-E3 or USPIO-PEG750-E3scramble. The mixture was incubated for 2 h at room temperature with gentle orbital mixing. The separation between free USPIO and USPIO bound to cells was achieved by using three successive centrifugations (10 min, 3000g) and resuspensions. We checked that there was no sedimentation of USPIO using this centrifugation speed. Finally, cells were resuspended in a saline solution containing 20% dextran to avoid cell sedimentation. Ten microliters of the cell suspension were aspirated through a Teflon tube (length 3 cm; diameter 0.625 mm) and the tube was inserted into the cavity of the X-band EPR spectrometer. The parameters used were: frequency, 9.4 GHz; microwave power, 5.05 mW; center field, 3150 G; field width, 5000 G; modulation amplitude, 30.81 G; time constant, 20.48 ms; conversion time, 20.48 ms; modulation field, 100 kHz; total acquisition time, 83 s. Measurements were performed at room temperature.

5.5. Animals

TIL cells were intramuscularly injected into the right gastrocnemius muscle of 5–6 week old male NMRI mice (Janvier, France). At a size of 8 ± 0.5 mm, tumors received an X-ray-dose of 10 Gy using an RT-250 device (Philips Medical Systems, Hamburg, Germany) to induce apoptosis. Mice were anesthetized using isoflurane (induction 2%; maintenance 1.4%) and the tumor was centered in a circular irradiation field (diameter 3 cm). At different time points after irradiation the animals received the contrast agent (USPIO-PEG750, USPIO-PEG750-E3 or USPIO-PEG750-E3scramble) by tail vein injection at a dose of 7.7 mg Fe/kg. The procedure was approved by a local ethics review committee according to national animal care regulations.

5.6. Histology

The induction of apoptosis was verified by staining with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Irradiated and untreated tumors were excised, embedded in OCT compound, frozen in liquid nitrogen-cooled isopentane and cut into 5 μm sections. Frozen slices were probed for apoptosis using a commercially available in situ cell death detection kit (Roche Diagnostics, Vilvoorde, Belgium) according to the manufacturer’s protocol; nuclei were also counterstained with 4,6-diamidino-2-phenylindole (DAPI) (data not shown). Slides were photographed using a Zeiss Axioskop microscope equipped for fluorescence. Twenty-four hours after irradiation, irradiated tumors and control tumors were excised, fixed in 10% neutral buffered formalin for 24 h and then embedded in paraffin. Tissues were sectioned at 5 μm and stained with hematoxylin and eosin, and slides were photographed using a Zeiss Mirax microscope. For both, TUNEL and hematoxylin/eosin staining, slides from three different tumors per group were used to calculate mean apoptotic or necrotic levels in tumors respectively using Image J.

5.7. Ex vivo monitoring of tumor cell death after irradiation

Iron oxide particles were injected into the mice at different time points after tumor irradiation (2, 4 or 24 h). The animals were killed 3 h after contrast agent injection and tumors were excised. For the control group, animals were not irradiated. The excised tumors were freeze-dried and then crushed into a fine powder. The powder was weighted and then placed into the X-band EPR cavity. We calculated the iron oxide content in each tumor by comparison with the earlier calibration curve. The instrument settings were the same as used for in vitro measurements.

5.8. In vivo time course of iron accumulation in tumors

L-band EPR (Magnettech, Germany) was used to track the changes in tumor iron oxide content in real time. Four hours after X-ray irradiation of the tumors, the different USPIO particles were injected intravenously. Mice were anesthetized using isoflurane and their right rear leg was passed through the loop surface coil of the EPR spectrometer. Because the antenna has a loop shape, the leg was held by the antenna and the leg was always placed in the same way to insure similar tumor position during the 24 h of measurements. The signal was recorded every hour up to 6 h and once again at 24 h. Experimental parameters were: frequency, 1.2 GHz; microwave power, 24 mW; center field, 50 mT; sweep, 26 mT; modulation field, 100 kHz; modulation amplitude, 0.42 mT; acquisition time, 60 s.

5.9. In vivo imaging

All MR imaging experiments were performed at 4.7 T on a Bruker Biospec (Ettlingen, Germany) with a whole-body radiofrequency coil for excitation and signal reception. A T₂-weighted rapid acquisition relaxation-enhanced sequence (relaxation time, TR, 4090.7 ms; echo time, TE, 50.5 ms) was used to provide anatomical images of the mice. Then a multi-spin-echo-sequence was applied for accurate assessment of signal intensities (SI) and T₂ relaxation times before and after contrast agent injection; TR, 3197.4 ms; TE, 6.69 ms; number of echoes, 30; field of view, 4 cm; matrix, 128 × 128; slice thickness, 2 mm; bandwidth, 50 kHz; average, 1; total acquisition time, 6 min, 49 s. Mice were imaged by MRI 4 h after the irradiation. Mice were anesthetized using isoflurane and a pre-contrast image was taken. At time 0, the USPIO were injected through a catheter and an acquisition was launched every 30 min for up to 3 h. Contrary to the L-band EPR experiment, 3 h was the endpoint of this MR imaging study because it was not possible to keep the mouse under anesthesia any longer. It was important to keep the mouse in exactly the same position in order to allow ensuing image subtraction between pre- and post-contrast images. As a control, we placed a phantom tube containing CuSO₄ (100 mg/l) alongside the animals. The mean SI of the tumors was measured by hand-drawn regions of interest (Paravision, Bruker) on images arising from the tenth echo (TE = 67 ms) of the multi-echo sequence. Subtraction images were obtained by subtracting post-contrast images from corresponding pre-contrast images. T₂ relaxation times for tumors were calculated from the multi-spin-echo datasets using MATLAB. T₂ values were obtained by an exponential fit of the signal amplitudes versus echo time.

5.10. Statistical analysis

All data are shown as means ± standard errors of the mean. Comparisons between groups were made with a two-way ANOVA test and a p-value less than 0.05 was considered as significant. The following symbols are used in the figures: *p < 0.05; **p < 0.01; ***p < 0.001.
Acknowledgements

This work is supported by grants from the Belgian National Fund for Scientific Research (FNRS), Televie grants (7.4597.06), the Fonds Joseph Maisin, the Saint-Luc Foundation, the Fondation contre le Cancer, the ‘Actions de Recherches Concertées-Communauté Française de Belgique-ARC 04/09-317 and 05/10-335’, and the ‘Pôle d’attraction Interuniversitaire PAI VI’ (P6/38 and P6/29).

References

