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Abstract 
 
Cassytha filiformis (Lauraceae), a widely distributed parasitic plant, contains several 
aporphine alkaloids and is often used in African folk medicine to treat cancer, African 
trypanosomiasis and other diseases. Samples of C. filiformis from Benin were studied. 
We isolated and identified 6 aporphines and analysed the in vitro cytotoxic properties of 
four of them on different cancer and non-cancer cell lines. The major alkaloids 
(actinodaphnine, cassythine, and dicentrine) were also shown to possess 
antitrypanosomal properties in vitro on Trypanosoma brucei brucei. In order to 
elucidate their mechanism of action, the binding mode of these molecules to DNA was 
studied. The results of the optical measurements showed that these three alkaloids bind 
to DNA and behave as typical intercalating agents. Biochemical experiments also 
indicated that they interfere with the catalytic activity of topoisomerases. These 
interactions with DNA may explain, at least in part, the effects observed on cancer cells 
and on trypanosomes. 
 
In order to quantify these alkaloids in samples from different origins, a sensitive and 
accurate procedure based on an alkaloid extraction coupled to a HPLC-UV-MS 
determination has been developed for the separation and quantification of the major 
aporphines in C. filiformis. The extraction parameters and the liquid chromatography 
conditions were optimized in order to improve the selectivity of the method, which was 
completely validated using cassythine, one of the major aporphines in our samples, as 
reference standard. This procedure was successfully applied to the determination of 
these pharmacologically interesting aporphines in seven different batches of C. 
filiformis. The results showed variations in the total alkaloid content in samples, which 
ranged from 1.1 to 4.3%. 
 
Introduction 
 
C. filiformis is a sprawling parasitic herb which is widely distributed along the 

seashores throughout the tropics. Several aporphinoid alkaloids have been isolated from 

samples originating from Taiwan, Brazil, Australia and New Guinea but compositions 

are quite variable among origins1-3. A methanolic extract of a Chinese sample was found 
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to exhibit a significant vasorelaxing activity as well as an inhibitory effect on platelet 

aggregation induced by several aggregating agents. A bio-guided fractionation of this 

extract allowed to isolate cathafiline, cathaformine, predicentrine, ocoteine, 

actinodaphnine and N-methylactinodaphnine which all have antiplatelet actions. The 

last two compounds also showed vasorelaxing properties and ocoteine was shown to be 

a selective α1-adrenoceptor antagonist in isolated rat thoracic aorta4. It is known in 

Mauritius as “liane sans fin“ and is, according to PLARM5, one of the 215 most used 

plants in the Indian Ocean islands. In African traditional medicine the practitioners use 

the whole plant mostly as an aqueous extract to fight several infections, parasites or to 

treat cancers6. In order to confirm these last traditional uses, we investigated the 

potential cytotoxic and antitrypanosomal activity of a Beninese C. filiformis extract and 

its major alkaloids. 

 
As topoisomerases have been proposed as potential targets for aporphines7,8 and 

because Woo et al8 have suggested that dicentrine behaves as a DNA targeted 

“adaptative” intercalating agent, we investigated the interaction of the aporphines 

isolated from C. filiformis with DNA and studied their potential inhibition of the DNA-

associated enzymes topoisomerases I and II, which both serve to resolve constraints in 

the genome. 

 
Data on the alkaloids from C. filiformis showed that compositions were quite variable 

depending on the origin of the samples. The composition could also vary according to 

the host plant of this parasitic plant and the season of the year. Therefore we decided to 

quantify the aporphines in several samples. The quantification methods for aporphines 

in plant samples described in the literature, when applied to the tested samples, did not 

allow a good separation of the major aporphines nor an ESI detection9-13. Therefore, a 

new HPLC method coupled to UV detection had to be developed and validated for the 

separation and quantification of these pharmacologically interesting aporphines in C. 

filiformis. In order to confirm the structure of these compounds and demonstrate the 
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specificity of the present HPLC-UV method, the mobile phase was selected to be 

compatible with ESI-MS detection which has not been used in routine analysis. The 

method was validated by considering different parameters such as selectivity, response 

function, trueness, precision, accuracy and linearity. Finally, the method was 

successfully used to quantify aporphines in different batches of C. filiformis. 

 
Materials and Methods 
 
Plant material 
 
The first sample of Cassytha filiformis L. (Lauraceae) was collected at Sèmè, Ouémé, 

Benin and identified by Prof V Adjakidjé. A voucher has been deposited at the 

Herbarium of the Belgian National Botanical Garden, at Meise (BR-S.P. 848 105). Plant 

materials used for quantification were taken on various host plants and at different 

seasons of the years 2002-2003 (dry or rainy seasons) (Table 1). The collected plants 

were air-dried and kept at room temperature until analysis. Just before extraction, the 

dried plant materials were ground and passed through a sieve (Retsch® 355 µm) to 

obtain homogeneous powders. 
 

Table 1: Various batches of C. filiformis collected on different hosts and seasons (dry or rainy) of 
the year 2002-2003. Ekpe and Sèmè are geographically close and have the same type of soil. 

 
Batch of  

C. filiformis 
Collecting 

place Season of the collecting Host plant of C. filiformis 

    
1 Ekpe Short rainy season Acacia auriculiformis (Mimosaceae) 
2 Ekpe Long dry season Acacia auriculiformis (Mimosaceae) 
3 Sèmè Long rainy season Anacardium occidentale (Anacardiaceae) 
4 Sèmè Long rainy season Mangifera indica (Anacardiaceae) 
5 Sèmè Long dry season Mangifera indica (Anacardiaceae) 
6 Sèmè Long rainy season Azadirachta indica (Meliaceae) 
7 Sèmè Long dry season Hyptis suaveolens (Lamiaceae) 
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Preparation of the crude alkaloidal extract for in vitro tests 
 
Air-dried aerial parts (1708 g) of C. filiformis were powdered, macerated during 24 h 

with MeOH-HOAc (99:1) and exhaustively percolated with the same solvent mixture. 

After concentration of the percolate under reduced pressure and filtration, the acidic 

aqueous solution was washed with ether, alkalinised by NaHCO3 to pH 8 and extracted 

with CH2Cl2. NH4OH 25% was then added to pH 11 and the solution was repeatedly 

extracted with CH2Cl2. The CH2Cl2 layers were dried over anhydrous Na2SO4 and 

concentrated to give respectively 3.61 and 0.62 g of residues.  

 
Preparation of the alkaloid extract for quantifications 
 
50 g of dried and powdered samples of C. filiformis were macerated four times with 250 

mL MeOH acidified with 1% of acetic acid at 50 °C in a refluxed water bath for 1 h. 

Between each maceration the residue was filtered and washed with 50 mL of the same 

solvent. 

 
The extracts were combined and concentrated under reduced pressure. The residue was 

dissolved in 400 mL of an aqueous solution acidified by acetic acid (1%) then filtered. 

The filtrate was washed three times with 150 mL ether. The aqueous acid layer was 

basified (pH 9.5) with NH4OH 25% and extracted three times with 200 mL CH2Cl2. The 

CH2Cl2 layers were combined and dried over anhydrous Na2SO4 and evaporated to 

dryness. 50 mg of the residue obtained was dissolved in 50 mL MeOH. The solution of 

alkaloid extract (1 mg/mL) was passed through 0.45 µm membrane and 20 µL of this 

filtered extract were directly injected into the HPLC system. This standardized protocol 

was applied to each sample of C. filiformis. For HPLC-MS experiments, the solution of 

alkaloid extract (1 mg/mL) was diluted with MeOH to obtain solutions of about 500 

µg/mL before membrane filtration. 
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Purification of alkaloids 
 
Alkaloids were purified as previously described14 using High Speed Counter Current 

Chromatography, MPLC on Toyopearl® HW-40S, preparative TLC on silica gel and 

RP-18 Lobar® columns. Structural identification of (2-7) (Figure 1) was carried out by 

analysis of their spectroscopic data (1H, 13C NMR and MS) and comparison with 

previously reported values3,15,16.  

 
Boldine (1) (Figure 1) was purchased from Federa (Brussels, Belgium). 

 

 

 

 

 

 

 

 

 
Compound 

 

 
R1 

 
R2 

 
R3 

 
R6 

 
R9 

 
R10 

 
R11 

        
1 Boldine O-CH3 OH H CH3 OH O-CH3 H 
2 Actinodaphnine -O-CH2-O- H H OH O-CH3 H 
3 Cassythine -O-CH2-O- O-CH3 H OH O-CH3 H 
4 Dicentrine -O-CH2-O- H CH3 O-CH3 O-CH3 H 
5 Norneolitsine -O-CH2-O- H H -O-CH2-O- H 
6 Neolitsine -O-CH2-O- H CH3 -O-CH2-O- H 
7 Cassythidine -O-CH2-O- O-CH3 H -O-CH2-O- H 
      

 
Figure. 1: Structure of boldine (1) and of the identified aporphines (2-7) of C. filiformis 
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Cytotoxic assays 
 
Cytotoxicity of crude extract and isolated compounds was determined after 72 hours 

incubation on HL-60, mouse 3T3 fibroblasts, human HeLa and melanoma Mel-5 cell 

lines using tetrazolium salts MTT (Sigma) and WST-1 (Boehringer) colorimetric 

assays17. The relative absorbance was expressed as a percentage of the corresponding 

control considered as 100%. Means and standard errors were calculated. Student t-test 

was performed (statistical significance was set at p < 0.05* and 0.001**). The results 

are expressed by IC50 values (concentration of compounds causing 50% inhibition of 

cell growth) calculated from graphs using at least five different concentrations of each 

alkaloid. 

 
Antitrypanosomal activity 
 
Trypanosoma brucei brucei (T. b. brucei) (strain 427) bloodstream forms were used for 

determination of the in vitro antitrypanosomal activity of the crude extract and the 

major C. filiformis alkaloids as explained in the literature18, after 72 hours of incubation, 

by the Alamar Blue™ (Immunosource, Halle-Zoersel, Belgium) test19. The emanating 

fluorescence was expressed as percentage of the control, considered as 100%, and IC50 

values (concentration of compound that reduced fluorescence intensity by 50%) were 

calculated by linear interpolation selecting values above and below the 50% mark 

according to Hills et al20. The antitrypanosomal drugs, diminazene aceturate (Berenil®, 

Hoechst AG) and suramin (Sigma), were used as positive controls19. All experiments 

were performed at least in triplicate. 

 
Absorption spectra and melting temperature studies 
 
Melting curves and absorption spectra were measured using an Uvikon 943 

spectrophotometer coupled to a Neslab RTE111 cryostat as previously described18. For 

the melting curves, the measurements were performed in BPE buffer pH 7.1 at an 
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alkaloid concentration of 20 µM together with CT-DNA or poly(dA-dT)2 at 20 µM 

(DNA-phosphate/drug ratio (P/D) = 1). The "melting" temperature Tm was taken as the 

mid-point of the hyperchromic transition. 

 
Absorption spectra measurements were performed in 1 mM sodium cacodylate buffer 

(pH 6.5) at a compound concentration of 20 µM together with the CT-DNA at 200 µM 

(DNA-phosphate/drug ratio (P/D) = 10). A DNA blank at the same nucleotide 

concentration was performed concomitantly and used as a reference in the recording of 

absorption spectra. 

 
Electric linear dichroism (ELD) 
 
ELD measurements were performed with a computerized optical measurement system 

using the procedures previously outlined21. All experiments were conducted with a 10 

mm pathlength Kerr cell having 1.5 mm electrode separation. The samples were 

oriented under an electric field strength varying from 1 to 14 kV/cm. Each alkaloid was 

studied at a DNA-phosphate/drug ratio (P/D) = 20.  

 
Circular dichroism (CD) 
 
CD measurements were recorded on a Jobin-Yvon CD6 dichograph. The same solutions 

as in the ELD experiments were used. Solutions of alkaloids and/or nucleic acids in 1 

mM sodium cacodylate buffer pH 6.5 were scanned using a 1 cm pathlength cell. Three 

scans were accumulated and automatically averaged. 

 
Topoisomerase-mediated DNA relaxation experiments 
 
Topoisomerase I and II-mediated DNA relaxation assays were performed as described 

earlier18,22. For the topoisomerase I assays, supercoiled pLAZ3 DNA (130 ng) was 

incubated with topoisomerase I in a relaxation buffer. Camptothecin (Sigma) was used 

as a positive control. 
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For the topoisomerase II assays, supercoiled pLAZ3 DNA (130 ng) was incubated with 

human topoisomerase II in a relaxation buffer. Etoposide (Sigma) was used as a positive 

control. 

 
For both assays, reactions were terminated by adding SDS to 0.25% and proteinase K to 

250 µg/mL. DNA samples were then added to the electrophoresis dye mixture (5 µL) 

and electrophoresed at room temperature in 1% agarose gels. 

 
HPLC chromatographic conditions 
 
A LiChrospher 60, RP-select B column, (250 × 4 mm, 5 µm particle size) was used 

throughout all chromatographic experiments and was equipped with a guard column 

packed with the same sorbent (4 × 4 mm) manufactured by Merck. The HPLC 

separations were carried out at room temperature as described previously23. The mobile 

phase consisted of (A) water containing 10 mM ammonium acetate adjusted to pH 3 

with acetic acid-acetonitrile (90:10, v/v) and (B) acetonitrile. A gradient elution 

program was applied as follows: 0-2 min linear increase from 0 to 5% B; 2-5 min hold 

on 5% B; 5-31 min linear increase to 10% B; 31-40 min hold on 10% B; 40-45 min 

linear increase to 15% B; 45-74 min linear increase to 20% B; 74-79 min linear increase 

to 40% B; 79-81 min linear decrease to 0% B; kept to 90 min. The flow rate was kept 

constant at 0.7 mL/min, and the injection volume was 20 µL. Peaks were detected at 

307 nm. Each solution was injected three times.  

 
Standard stock solutions 
 
Stock solutions of boldine (1) (Figure 1) (Federa, Brussels, Belgium) (S1) and 

cassythine (S2) were prepared independently by dissolving the appropriate amount of 

each compound in methanol in order to obtain a final concentration of 52 and 1000 

µg/mL, respectively. Furthermore, three different concentrations of cassythine (20, 165 

and 510 µg/mL) were added to a solution of 1 mg/mL of the alkaloid extract.  
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Peak identification 
 
Alkaloids were identified by comparison of their retention times, UV and mass spectra 

with the corresponding pure compounds previously isolated from C. filiformis14,24. 

Identification of compound A (Figure 2) is not complete as we did not manage to obtain 

enough pure compound for refined NMR structure determination. Nevertheless, MS 

data showed that it may be nor-boldine or one of its isomers24. 

 
Data analysis 
 
The validation data were recorded and processed by e.noval version 1.0 software 

(Arlenda, Belgium) and the statistical data of the dosage with SPSS 10.1.4 for Windows 

software (SPSS Inc, Chicago, IL, USA). 

 
Results and Discussion 
 
Cytotoxicity and antitrypanosomal activity  
 
The alkaloid fraction showed a cytotoxic activity in vitro against HeLa cells (IC50 = 35.2 

µg/mL). Purification of this fraction led to the isolation of four known aporphine 

alkaloids: neolitsine (6), dicentrine (4), cassythine (3) and actinodaphnine (2) (Figure 

1)14. Furthermore, two other alkaloids were identified later: norneolitsine (5) and 

cassythidine (7)23,24.  

 
Compounds (2,3,4,6) were tested for their ability to inhibit in vitro the growth of HeLa, 

Mel-5, HL-60 cancer cells and 3T3 non-cancer cells (Table 2). 
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Table 2: Cytotoxic activities of alkaloids isolated from C. filiformis 
 

 IC50 (µM)a 
Compound HeLa* 3T3* Mel-5* HL-60** 

Neolitsine (6) 21.6 21.4 42.1 54.8 
Dicentrine (4) 33.3 35.1 36.3 28.3 
Cassythine (3) 44.3 57.6 24.3 19.9 
Actinodaphnine (2) 30.9 66.4 25.7 15.4 
Camptothecin 0.04 2.6 0.4 0.005 

aIC50 (concentration of drug causing 50% inhibition of growth), *MTT test, **WST-1 test 
Camptothecin was used as a positive control. 

 
Our results also showed differences in the sensitivities between the tested cell lines to 

neolitsine, cassythine and actinodaphnine. In general these compounds do not display a 

selective activity on cancer cell lines, an exception seems to be actinodaphnine which is 

at least twice less toxic on non cancer 3T3 cells. This is also in agreement with the 

findings of Boustie et al25 who observed an IC50 of 107 µM on non cancer Vero cells. 

Dicentrine and actinodaphnine have also been shown to have in vivo anti-tumor 

properties26,27. The presence of these four alkaloids may thus explain the cytotoxic 

activity of the extract and support the traditional use of C. filiformis in Benin to treat 

cancers. 

 
As C. filiformis is traditionally used to treat African trypanosomiasis, a disease for 

which appropriate and affordable treatment is scarce28, we decided to analyze the in 

vitro effect of a crude alkaloid extract and its major isolated compounds on 

Trypanosoma brucei brucei, one of the causative agents of this disease. The crude 

extract revealed a significant antitrypanosomal activity (IC50 = 2.2 µg/mL). The activity 

of its major alkaloids is given  in Table 3. 
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Table 3: Antitrypanosomal activity of alkaloids (2-4) 
 

IC50 (µM)a Compound 
T. b. bruceib 

  
Actinodaphnine (2) 3.2 
Cassythine (3) 6.0 
Dicentrine (4) 14.6 
Suramin 0.06 
Diminazene aceturate 0.02 

  
 aValues indicate 50% inhibitory concentrations (IC50) in µM 

bTrypanosoma brucei brucei bloodstream forms 
 

DNA interaction and binding mode 
 
As Woo et al8 have suggested that dicentrine behaves as a DNA targeted “adaptative” 

intercalating agent, we also investigated the interaction of these aporphine alkaloids 

with DNA and their potential inhibitiory effect on the DNA-associated enzymes 

topoisomerases I and II.  

 
Absorption measurements were performed at 20 µM in the absence and presence of 200 

µM calf thymus DNA to estimate the interaction of the compounds with DNA. The 

absorption spectrum of each alkaloid at 20 µM was recorded in the absence and 

presence of 200 µM calf thymus DNA. Addition of all three alkaloids (2,3,4) to DNA 

induced significant hypochromic effects and bathochromic shifts in the absorption band 

of the aporphine chromophore centered at 305 nm, reflecting the interaction between the 

electronic states of the chromophore and the DNA bases18. Melting temperature (Tm) 

studies were performed with CT-DNA and the alternating polynucleotide poly(dA-dT)2. 

The difference in Tm values between the drug-DNA complexes and free DNA or 

polynucleotide in solution provides a useful means to evaluate qualitatively the 

interaction of the molecules with double stranded DNA. The results of these Tm 

measurements show that all three molecules stabilized duplex DNA against heat 

denaturation18. As expected, the stabilization due to these three compounds is 

significantly higher for the alternating poly(dA-dT)2 polymer (∆Tm > 6 °C) than for 
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CT-DNA (∆Tm < 6 °C) due to the lower intrinsic Tm of the synthetic polymer 

compared to the naturally occuring DNA from CT which contains 42% GC base pairs 

and therefore melts at a higher temperature than poly(dA-dT)2 (Tm of 42° and 61°C for 

poly(dA-dT)2 and CT-DNA, respectively)18. 

 
Additionally, two spectroscopic methods with polarized light were applied to define the 

DNA binding process for the studied aporphines. The ELD experiments provided direct 

information on the DNA intercalating properties of the tested compounds. For all 3 

aporphines, the reduced dichroism ∆A/A was negative in the alkaloid absorption band 

(300-312 nm) reflecting the orientation of the chromophore perpendicular to the DNA 

helix axis (or electric field direction)18. All the CD spectra of the complexes between 

the aporphines and CT-DNA revealed weak amplitude variations compared to the 

spectra obtained with the molecule alone in the absorption band of this latter one. 

 
From the experiments using circularly and linearly polarized light, we concluded that 

the 3 aporphines are oriented parallel to the DNA base pairs, as expected for an 

intercalative binding mode. This behavior is in accordance with an intercalation into 

DNA18.  

 
Topoisomerase I and II inhibition 
 
To analyze in greater detail the mode of action of these molecules, we evaluated their 

effects on the catalytic activity of topoisomerases I and II using a relaxation assay with 

supercoiled DNA. 

 
Closed circular DNA was incubated with topoisomerase I in the absence and in the 

presence of the 3 aporphines (2,3,4). The results18 indicate that the relaxation of DNA 

was already altered by the three alkaloids isolated from C. filiformis at a concentration 

of 5 µM, as observed with the reference topoisomerase I poison, camptothecin. 

Ethidium-prestained gels indicated that none of the aporphines promoted DNA cleavage 
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by topoisomerase I. In other words, the alkaloids did not stabilize topoisomerase I-DNA 

complexes, as typically observed with topoisomerase I poisons such as camptothecin29. 

So we can conclude that actinodaphnine, dicentrine and cassythine exhibit a non-

specific topoisomerase I inhibition, most likely due to intercalation into DNA. 

 
Similar experiments performed with human topoisomerase II have revealed that none of 

the aporphines are poisons of this enzyme18.  

 
Quantification of aporphines by HPLC-UV 
 
Method development 
 
Optimisation of the alkaloid extraction from C. filiformis 
 
Different procedures were tested to obtain an optimal and well-suited time extraction of 

the alkaloids from the plant material. The best results were obtained with the quadruple 

maceration at 50 °C as proposed by Kartal et al30 for the extraction of other types of 

alkaloids. In addition to these preliminary extraction experiments14, the liquid-liquid 

extraction step was standardized, a pH value of 9.5 and a 200 mL-volume of 

dichloromethane in triplicate were selected. 

 
Chromatographic separation 
 
The chromatographic separation parameters were optimised to allow a good separation 

of all aporphines (Figure 2). In these conditions, the resolution values between each 

aporphine peak-pair were higher than 1.5 and no significant interferences were observed 

at the time of retention of the different alkaloids of interest. 

 
Method validation 
 
The overall validation strategy involves four steps: evaluation of the extraction 

efficiency, determination of the cassythine content in one batch of alkaloid extract, a 

pre-validation phase and the validation phase or formal validation step. As no alkaloid 



Proceedings of Bioresources Towards Drug Discovery and Development, 2004 
 

 94

identified in the tested samples of C. filiformis23 was commercially available, cassythine 

(3), one of the major aporphines from our batch of C. filiformis14 was selected as 

reference standard to express the results. However, it was checked that the UV response 

factors of the other aporphine alkaloids were very close.  
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Figure 2: Typical chromatogram of the total alkaloid extract (1 mg/mL) obtained by using the 
extraction step on the batch 5 of C. filiformis coupled to LC method. Key to peak identity: 1, 
compound A; 2, actinodaphnine; 3, cassythine; 4, dicentrine; 5, norneolitsine; 6, neolitsine; 7, 
cassythidine. 
 
Determination of the extraction efficiency  
 
In the present study, a recovery test was performed using boldine (1) to evaluate the 

efficiency of the standardized extraction method31,32 first without the matrix showing a 

mean recovery of about 101%. When the same amount (13 mg) of boldine was added to 
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three 50 g samples of C. filiformis and extracted by the standardized procedure, the 

mean recovery was about 75% indicating the influence of the matrix (Table 4). 

However, as the relative standard deviation values for the mean recoveries (within and 

without matrix) were very close, this process was shown to be sufficiently reproducible. 
Table 4: Extraction efficiency 

Boldine (1) Samples Recovery (%) (na =3) mean ± SDb 
   

without matrix 1 100.2 ± 4.7 
 2 104.2 ± 5.8 
 3 99.1 ± 0.4 
 Mean ± SDb 101.2 ± 4.4 
 (Nc=9) 

 
 

within matrix 1 82.1 ± 2.2 
 2 71.9 ± 1.6 
 3 71.0 ± 3.6 
 Mean ± SDb 75.0 ± 5.8 
 (Nc=9)  
   

aNumber of replicates (n) 
bStandard deviation (SD) 
cTotal number of experiments (N) 

 
Detemination of the cassythine content in the alkaloid extract 
 
Two different quantitative methods were used to determine the amount of cassythine in 

the alkaloid extract (batch 1). In the first technique, a standard curve using known 

amounts of pure cassythine dissolved in methanol at three different concentration levels 

ranging from 20 to 1000 µg/mL was constructed (n=3; k=3). In the second technique, 

the standard addition method33, three different concentration levels of cassythine of 

about 20, 160 and 510 µg/mL were added to a methanolic solution of 1 mg/mL of the 

alkaloid extract of C. filiformis batch 123. Each concentration level was injected three 

times each day for three days. The concentrations calculated by these two different 

quantitative methods were not significantly different. These preliminary experiments 

seem to demonstrate that no matrix effect can be allotted to the alkaloid extract and that 

higher concentration levels (1000 µg/mL of cassythine in methanol) could be used for 

the routine analysis of the different batches of the plant materials.  
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Prevalidation step 
 
Due to its influence on the other criteria, the stability of the analyte investigated was 

checked before starting the prevalidation step. In the present study, the stability of a 

stock solution of cassythine as well as the solution of the alkaloid extract stored for 30 

days at 4 °C was demonstrated. No significant degradation of the compounds of interest 

was observed. 
 
On the basis of the prevalidation protocol proposed by the “Société Française des 

Sciences et Techniques Pharmaceutiques (SFSTP)” Commission31,34, the experiments 

achieved during the prevalidation step deal with the analysis of the response function 

and the selection of the appropriate model for the calibration curve in the validation 

step. For that purpose, the SFSTP approach based on two-sided 95% β-expectation 

confidence intervals for total measurement error –including both bias and precision – of 

the calibration standards has been used34. An acceptance criteria of 15% was assessed 

according to the Food and Drug Administration (FDA) document35. In order to 

determine the response function, the alkaloid extract of batch 1 of C. filiformis was used 

as the matrix. Three calibration curves in the matrix (k=3) were constructed with known 

amounts of cassythine in the range comprised between 20 and 510 µg/mL by selecting 

three concentration levels (m=3). Each level of concentration was injected three times 

(n=3). Before calculation of the response function, the response corresponding to the 

initial concentration present in the matrix under investigation plus its standard error was 

then systematically removed from each signal. As illustrated in Figure 3, once this 

computation has been performed, the response function can be determined by applying 

different regression models. According to this visual analysis, better results were 

obtained using a quadratic regression model (Figure 3f) but as other profiles (c.f. Figure 

3a, 3c, 3d and 3e) were within the acceptance limits, a linear regression through 0 fitted 

with only the highest concentration level, could be used as regression model34. 

Consequently, a calibration curve built from the highest concentration level (1000 
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µg/mL) of cassythine in methanol was selected for the validation step in order to avoid 

time-consuming analysis of a standard calibration curve with different concentration 

levels23. 

a                                      b 

 
 
                                           c                                                   d 

 
 
                                           e                                         f 

 
 

Figure 3: Accuracy profiles of cassythine (concentration in µg/mL) using a (3a) weighted linear 
regression model with a weight equal to 1/X, (3b) linear regression model, (3c) linear regression 

model after square root transformation, (3d) linear regression model after logarithm 
transformation, (3e) linear regression through 0 fitted with only the highest concentration level, (3f) 

quadratic regression 
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Validation step 
 
Selectivity 
 
The selectivity of the analytical method was investigated in order to assume that the 

method could be used to quantify cassythine and the other aporphine alkaloids in 

presence of other constituents in the alkaloid extract. Peaks were identified by 

comparison of their retention time (RT) with the corresponding pure compounds 

previously isolated from C. filiformis and HPLC-MS analysis at different levels of the 

peaks. The HPLC-MS data confirmed that no interferences were observed at the time of 

retention of the different alkaloids under investigation.  

 
Response function 
 
The response function of an analytical procedure is, within the range selected, the 

existing relationship between the response (signal) and the concentration (quantity) of 

the analyte in the sample. The validation results for the response function31,32,35 are 

presented in Table 5.  

 
Trueness 
 
Trueness refers to the closeness of agreement between a conventionally accepted value 

and a mean experimental one. Compared to the regulatory requirements fixed23, the 

proposed method was quite acceptable since the bias (Table 5) did not exceed the values 

of 15% irrespective of the concentration level23. 

 
Precision 
 
For each concentration level of the validation standards, the variances of repeatability 

and of time dependent intermediate precision as well as the corresponding relative 

standard deviations (RSD) were computed from the estimated concentrations. The RSD 

values presented in Table 5 were relatively low, less than 4% for the lowest 
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concentration level of the range, and illustrated the good precision of the proposed 

method.  
Table 5: Validation results 

Validation Criterion Cassythine 

Response function  Range 0 – 1016.0 µg/mL 
(na = 3) Slope  62430 

Trueness (kb = 3; na = 3)  
Absolute bias: µg/mL (relative bias: %) 

 

20.0 µg/mL  1.25 (6.2) 
166.7 µg/mL  0.19 (0.1) 
509.3 µg/mL  25.62 (5.0) 

Precision (kb = 3; na = 3)    
Repeatability (RSDc %)    
20.0 µg/mL 2.2 
166.7 µg/mL 1.3 
509.3 µg/mL 0.8 

Intermediate precision (RSDc %)    
20.0 µg/mL  3.9 
166.7 µg/mL  2.6 
509.3 µg/mL  0.8 

Accuracy (kb = 3; na = 3) 
β-expectation confidence limit (µg/mL) 

 

20.0 µg/mL  19.2 – 23.3 
166.7 µg/mL  155.4 – 178.3 
509.3 µg/mL  526.8 – 543.1 

Linearity  Range (µg/mL) 20 – 509.3  
(kb = 3; na = 3) Slope  1.054 
 Intercept  - 3.545 
 r2 0.9995 

LODd µg/mL 13.1 
LOQe µg/mL 20.0 

Effect of dilution  Factor (µg/mL) recovery ± SD (%) 
(na = 3) 2 (1000 µg/mL) 101.6 ± 2.1 
 5 (2500 µg/mL) 102.0 ± 3.8 
   

 aNumber of replicates (n) bNumber of series (day) (k) 
 cStandard deviation (RSD) dLimit of detection (LOD) 
 eLimit of quantitation (LOQ) 
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Accuracy 
 
Accuracy is an expression of the concordance of one assay value and the conventionally 

accepted value. The accuracy takes into account the total error, i.e. systematic and 

random errors, related to the test results34. The upper and lower β-expectation 

confidence limits expressed in µg/mL are presented in Table 5 as a function of the 

introduced concentrations. As can be seen from the results, the proposed method was 

accurate, since the different confidence limits of the bias did not exceed the acceptance 

limits at each concentration level.  

 
Linearity 
 
The linearity of an analytical method is its ability to give results directly proportional to 

the quantity of analyte within a definite range. In order to verify the method linearity, a 

regression line was fitted on the estimated or back-calculated concentrations as a 

function of the introduced concentrations by applying the linear regression model based 

on the least squares method31,32,34. The linearity of the present method was demonstrated 

since the absolute β-expectation confidence limits were within the absolute acceptance 

limits23.  

 
Detection and quantification limits 
 
The limit of detection (LOD) was estimated using the mean intercept of the calibration 

model and the residual variance of the regression33. By applying this computation 

method, the LOD was equal to 13 µg/mL. Moreover, as the accuracy profile did not go 

outside the acceptance limits, the limit of quantification (LOQ) was fixed to 20 µg/mL, 

i.e. the smallest concentration level quantitatively determined with a well-defined 

accuracy34(Table 5).  
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Effect of the dilution  
 
Due to the unknown amount of alkaloid expected in the plant materials, the influence of 

the dilution procedure, which is intended to be used in routine for samples with a 

concentration higher than the upper limit of the range, has to be checked31,32. In the 

present study, two dilution factors (2 and 5) were studied and no significant effect was 

observed (Table 5).  

 
Application to samples of C. filiformis 
 
According to the validation step, a linear calibration curve passing through zero built 

from one concentration of pure cassythine (1000 µg/mL) was used for calibration. 1 

mg/mL solutions of alkaloid extracts of each sample of C. filiformis obtained by the 

standardized protocol were injected three times and analysed by HPLC-UV. In each 

sample, the seven major separated aporphines were quantified and expressed in 

cassythine23. The results of the quantification (mean of three injections) for the seven 

samples are given in Figure 4. 
 

 
Figure 4: Different concentrations (µg aporphines expressed in cassythine by g of dried plant of C. 

filiformis) of quantifiable aporphines in the seven batches analyzed of C. filiformis. Values in 
parenthesis are the total alkaloid content in each batch expressed in percentage (%) 

    (4.17)             (4.31)             (1.27)               (1.88)             (1.13)             (1.23)              (3.60) 
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Comparison of the contents of the seven samples of C. filiformis 
 
The comparison was first done individually for each aporphine. In other words the 

contents of a single compound are compared for all the samples injected. To allow this 

comparison a statistical ANOVA test was applied to the data. P values < 0.05 indicated 

a significant difference between samples. All batches were found to be significantly 

different from each other except samples 3 and 6 for actinodaphnine and samples 4 and 

6 for dicentrine. The total amount of quantifiable aporphines was also found to be 

significantly different from each other. Even if the same standardized extraction was 

applied to all the batches of plant, the yields of total quantifiable aporphines could vary 

from 1.1 to 4.3 % of dried plant. The host plant and the period of the collection had both 

an effect on the quantity of aporphines and their relative proportions but a clear 

relationship according to the general effect of the season or the host plant cannot be 

deduced. Samples collected on the same host plant but at diverse seasons of the year 

were all different. The same facts were observed for samples collected at the same 

period but on different host plants (variations are more important). Nevertheless the four 

major aporphines are the same in all samples (Figure 4), but in variable proportions. 

According to the literature this does not seem to be the case with samples from other 

continents for which the major aporphines are different1-3. This may be due to an 

additive effect of the soil. We plan now to apply the validated procedure to other 

samples of C. filiformis from different countries to obtain further information on the role 

of these factors on the aporphine contents.  

 
Conclusions 
 
In conclusion we have shown that the crude alkaloid extract of a Beninese sample of C. 

filiformis possessed in vitro cytotoxic and antitrypanosomal activities. These properties 

may be partially explained by the presence of aporphine alkaloids. Six of them have 

been isolated and identified: actinodaphnine, cassythine, dicentrine, neolitsine, 

norneolitsine and cassythidine. The first four aporphines were shown to possess 
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cytotoxic properties on cancer (HeLa, Mel-5 and HL 60) and non-cancer (3T3) cell 

lines, while actinodaphnine, dicentrine and cassythine were also active on Trypanosoma 

brucei brucei, one of the causative agents of African trypanosomiasis. Spectroscopic 

and biochemical experiments have indicated that these three aporphines intercalate into 

DNA and non specifically inhibit topoisomerases. 

 

As aporphines isolated up to now from samples of C. filiformis varied considerably 

according to the origin of the sample, we decided to develop a selective and accurate 

procedure for the quantitative determination of the major aporphines in C. filiformis. 

The extraction step and the chromatographic conditions were optimised in order to 

improve the selectivity of the procedure, which was fully validated using cassythine as 

reference standard. This procedure was successfully applied to the determination and 

quantification of these aporphines in seven different batches of C. filiformis indicating 

that both the season of collection and the host plant influence the levels and proportions 

of aporphines in C. filiformis. 
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