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A B S T R A C T

Pseudomonas aeruginosa is a major cause of nosocomial infections. This organism shows a remarkable
capacity to resist antibiotics, either intrinsically (because of constitutive expression of b-lactamases and
efflux pumps, combined with low permeability of the outer-membrane) or following acquisition of
resistance genes (e.g., genes for b-lactamases, or enzymes inactivating aminoglycosides or modifying
their target), over-expression of efflux pumps, decreased expression of porins, or mutations in quinolone
targets. Worryingly, these mechanisms are often present simultaneously, thereby conferring multire-
sistant phenotypes. Susceptibility testing is therefore crucial in clinical practice. Empirical treatment
usually involves combination therapy, selected on the basis of known local epidemiology (usually a b-
lactam plus an aminoglycoside or a fluoroquinolone). However, therapy should be simplified as soon as
possible, based on susceptibility data and the patient’s clinical evolution. Alternative drugs (e.g.,
colistin) have proven useful against multiresistant strains, but innovative therapeutic options for the
future remain scarce, while attempts to develop vaccines have been unsuccessful to date. Among broad-
spectrum antibiotics in development, ceftobiprole, sitafloxacin and doripenem show interesting in-vitro
activity, although the first two molecules have been evaluated in clinics only against Gram-positive
organisms. Doripenem has received a fast track designation from the US Food and Drug Administration
for the treatment of nosocomial pneumonia. Pump inhibitors are undergoing phase I trials in cystic
fibrosis patients. Therefore, selecting appropriate antibiotics and optimising their use on the basis of
pharmacodynamic concepts currently remains the best way of coping with pseudomonal infections.
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I N T R O D U C T I O N

Known for many years to be a cause of serious
wound and surgical infections, but often regarded

as a secondary or opportunistic invader rather
than a cause of primary infection in healthy
tissues, Pseudomonas aeruginosa has now clearly
emerged as a major nosocomial pathogen in
immunocompromised and debilitated patients, as
well as in cystic fibrosis patients [1]. P. aeruginosa
has always been considered to be a difficult target
for antimicrobial chemotherapy. However, the
complete sequencing of a wild-type P. aeruginosa
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strain, achieved in 2000, has provided a great deal
of useful information, concerning not only its
pathogenicity, but also its potential for resistance
[2]. With 5570 open reading frames, the P. aeru-
ginosa genome is among the largest genomes in
the prokaryotic world, and encodes an unusually
high proportion of proteins involved in regula-
tion, transport and virulence functions, which
may explain the high versatility and adaptive
capacity of this species. In addition, 0.3% of the
total genes code for proteins involved in anti-
microbial resistance. The genome is also highly
flexible, with 10% of genes organised in ‘patho-
genicity islands’, comprising variable genes cod-
ing for virulence factors, and with the ability to
easily acquire large mobile genetic elements
(integrons) encoding resistance genes [3–5]. The
large size and the complexity of this genome is
probably the basis for the capacity of P. aeruginosa
to not only thrive in diverse environments and to
infect a large variety of body sites, but also to
resist (intrinsically or after acquisition of the
necessary genes) a large number of antimicrobial
agents.

C L I N I C A L M A N I F E S T A T I O N S

Most P. aeruginosa strains involved in infections
are both invasive and toxigenic, as a result of the
production of surface virulence factors (allowing
bacterial attachment, colonisation and invasion)
and secreted virulence factors (which damage
tissues or trigger the production of cytokines),
respectively [3]. The combination of virulence
determinants expressed by each strain tends to
determine the specific syndromes accompanying
an infection. However, in the clinic, it is often
difficult to distinguish between simple colonisa-
tion and infection, and no diagnostic tool is
available to assess the virulence potential of a
given isolate.

P. aeruginosa infects healthy tissues rarely, but,
when defences are compromised, it can infect
virtually all tissues. This explains why most
infections are nosocomial [6]. Table 1 lists the
main pathologies caused by P. aeruginosa. These
infections should be considered as severe, and
even life-threatening in specific situations, with
the highest rates of mortality recorded for cases of
bacteraemia in neutropenic patients (30–50%) [7]
and cases of nosocomial pneumonia (45–70%)
[8,9]. P. aeruginosa is well-adapted to the respirat-

ory tract environment, especially in patients with
chronic obstructive bronchopulmonary disease,
who are immunocompromised, or who are hos-
pitalised in intensive care units [10–12]. Accord-
ingly, P. aeruginosa is the predominant cause of
nosocomial pneumonia in ventilated patients [13]
and of lung infection in patients with cystic
fibrosis [14]. It also causes chronic colonisation
of the airways of patients suffering from bron-
chiestasis, chronic obstructive bronchopulmonary
disease or cystic fibrosis [15]. In neutropenic
cancer patients undergoing chemotherapy, bac-
teraemia with P. aeruginosa is a common compli-
cation [16]. Bacteraemia and septicaemia can also
occur in patients with immunodeficiency related
to AIDS, diabetes mellitus or severe burns [17–19].
Most of these infections are acquired in hospitals
and nursing homes [20]. P. aeruginosa is also the
third leading cause (12%) of hospital-acquired
urinary tract infections [21]. These infections can
occur via ascending or descending routes and are
usually secondary to urinary tract catheterisation,
instrumentation or surgery [22]. P. aeruginosa is
the predominant causal agent of ‘swimmer’s ear’

Table 1. Main pathologies caused by Pseudomonas aeru-
ginosa, grouped according to the infection site (adapted
from [1])

Infection site Specific pathologies

Occurrence

(at risk population)

Respiratory tract Acute pneumonia Frequent (hospital; ICU)
Chronic lower respiratory
tract infections

(Cystic fibrosis)

Blood Bacteraemia and septicaemia Frequent
Urinary tract Acute infections

Chronic infections
Relatively frequent
(complication resulting
from the presence of
foreign bodies)

Ear Otitis externa (‘swimmer’s ear’) Frequent
Malignant external otitis
Chronic suppurative otitis media

Skin and soft-
tissue infections

Dermatitis Relatively frequent
Wound infections (Trauma)
Burn wound sepsis
Ecthyma gangrenosa (Neutropenic patients)
Pyoderma
Folliculitis
Unmanageable forms of
acne vulgaris

Eye Keratitis (corneal ulcer) Rare (secondary
to trauma)

Endophthalmitis
Neonatal ophthalmia

Central nervous
system

Meningitis
Brain abscess

Rare (secondary
to neurosurgery
or trauma)

Heart Endocarditis Rare (drug addicts)
Bone and joint
infections

Stenoarticular pyoarthrosis
Vertebral osteomyelitis

Rare

Symphysis pubis infection
Osteochondritis of the foot
Chronic contiguous osteomyelitis

Gastrointestinal
tract

Necrotising enterocolitis Rare
Peri-rectal infections
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(a form of external otitis) [23] and of malignant
otitis in diabetic patients [24]. Although less
frequent than other organisms, P. aeruginosa can
also be the cause of devastating ophthalmic
infections (e.g., bacterial keratitis in individuals
with contact lenses [25], or neonatal ophthalmia),
meningitis and brain abscesses (spreading from
contiguous structures such as the inner ear or
paranasal sinus, or subsequent to trauma, surgery
or invasive diagnostic procedures [26]), and
endocarditis in intravenous drug users [27,28].
Skin and bone infections are rare, but can occur
after puncture wounds [1]. P. aeruginosa rarely
causes true infections of the digestive tract
(although peri-rectal infections, typical gastroen-
teritis and necrotising enterocolitis have been
reported), but colonisation by P. aeruginosa
favours the development of invasive infections
in patients at risk [29].

A N T I B I O T I C R E S I S T A N C E

P. aeruginosa is intrinsically resistant to several
antibiotics because of the low permeability of its
outer-membrane, the constitutive expression of
various efflux pumps, and the production of
antibiotic-inactivating enzymes (e.g., cephalospo-
rinases) [30]. Furthermore, it also has a remark-
able capacity to develop or acquire new
mechanisms of resistance to antibiotics. This
may be related to the large size and the versatility
of its genome, and to its distribution in aquatic
habitats, which could constitute a reservoir for
bacteria carrying other resistance genes [31].
Infections caused by resistant strains are a matter
of concern in many hospitals worldwide, since
they are associated with a three-fold higher rate of
mortality, a nine-fold higher rate of secondary
bacteraemia, a two-fold increase in the length of
hospital stay, and a considerable increase in
healthcare costs [32].

Table 2 summarises the main resistance
mechanisms that have been described in clinical
isolates for the three main classes of current anti-
pseudomonal agents (b-lactams, aminoglycosides
and fluoroquinolones). These mechanisms are
often present simultaneously, conferring multire-
sistance to many strains [33,34].

Reduced outer-membrane permeability caused,
for example, by qualitative or quantitative alter-
ations of the OprD porin (the uptake pathway for
hydrophilic carbapenems such as imipenem T
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and, to some extent, meropenem [35]), have been
associated with an increase in drug efflux, a
mechanism that confers cross-resistance to many
unrelated antibiotic classes [36]. The major efflux
systems involved in P. aeruginosa resistance
belong to the Hydrophobic ⁄ Amphiphilic Efflux-
1 (HAE1) family, a subclass of the Resistance
Nodulation Division (RND) transporter super-
family, which are energised by the proton-motive
force. These transporters function in conjunction
with a ‘membrane fusion protein’ and an ‘outer-
membrane factor’ to allow the efflux of drug
molecules across both membranes of the Gram-
negative bacterial cell envelope in a single energy-
coupled step [37]. Twelve of these putative
tripartite assemblies have been identified to date,
based on sequence homologies [2], among which
seven have already been shown to transport
antibiotics [36].

Some of these systems are expressed at a basal
level in wild-type strains (MexAB–OprM), and
participate in the intrinsic resistance of P. aerugi-
nosa. Others are induced markedly in response to
antibiotic pressure, but are expressed at a low
level (MexXY–OprM) or not at all (MexCD–OprJ
and MexEF–OprN) in the absence of antibiotic
[37].

Exposure to a single antibiotic may select for
mutants with increased pump production that
show cross-resistance to all the antibiotics that are
substrates of the derepressed pump. Quinolones,
which are substrates of all Mex efflux pumps [38],
appear to be particularly prone to select for cross-
resistance to aminoglycosides or b-lactams (see
Table 2 for substrate specificities of efflux
pumps). Importantly, the OprD porin and the
MexEF–OprN pumps are under the control of
common regulators acting in opposite ways, so
that increased expression of this pump [39] will
also cause resistance to antibiotics that are not
effluxed, but require the porin for entry (Table 2).

Efflux is usually considered to confer a low-to-
moderate level of resistance [40], but it plays a
major role in clinical isolates for at least three
reasons. First, it severely narrows the choice of
active antibiotics (e.g., the over-expression of
MexXY–OprM in clinical isolates confers resist-
ance not only to aminoglycosides, but also to
cefepime and fluoroquinolones [41]). Second, it
can cooperate with other mechanisms (e.g., muta-
tions in quinolone targets or production of
b-lactamases) to confer higher levels of resistance

[42–44]. Third, it can favour the emergence of
target mutations [45] by lowering the intra-bacte-
rial antibiotic concentrations.

Enzymic inactivation of antibiotics has been
described for b-lactams and aminoglycosides.
Among b-lactamases, extended-spectrum b-lacta-
mases (ESBLs) and carbapenemases (mainly met-
allo-b-lactamases) have spread widely in recent
years. ESBLs usually confer resistance to all
b-lactams except carbapenems (although certain
types, such as the GES-2 enzyme, are able to
hydrolyse carbapenems [46]). These enzymes
have, to date, been found in a limited number of
geographical areas, suggesting that certain of
these b-lactamase genes may occur in specific
ecosystems [46]. However, new enzymes are
described regularly [47,48], and the proportion
of ESBL-producing strains is increasing globally
[49,50]. ESBLs inhibited by clavulanic acid are
reported mostly in Enterobacteriacae, although
BEL-1 has been reported only in P. aeruginosa and
CTX-M enzymes have been reported only in
Enterobacteriaecae. The PER-1 ESBL remains
mostly confined to P. aeruginosa from Turkey
and southeast Asia. Carbapenem-hydrolysing
metallo-b-lactamases inactivate all subclasses of
b-lactams except monobactams. These carbapene-
mases are reported most frequently in Asia [51],
but outbreaks have also been described in Europe
in recent years [52–54]. These enzymes belong to
the IMP and VIM (mostly VIM-2) classes, or less
frequently, to the SIM, GIM or SPM classes.
Importantly, the genes encoding IMP-like and
VIM-like carbapenemases are located in integrons
containing other resistance genes (e.g., aminogly-
coside-inactivating enzymes) [51,55,56], so that
these isolates will show co-resistance phenotypes.
Enzymes inactivating aminoglycosides are pre-
sent worldwide, and are detected in up to 20% of
clinical isolates in Europe and Latin America [57].
Acting on specific substituents of the aminogly-
coside molecule, they do not necessarily confer
cross-resistance to all aminoglycosides. Thus,
amikacin, which is a poor substrate for these
enzymes, usually demonstrates better activity
against P. aeruginosa than do other aminoglyco-
sides [58].

Target mutation is a well-known mechanism of
resistance to fluoroquinolones. Whereas fluoro-
quinolones differ in their affinities for their target
enzymes (topoisomerase IV and DNA gyrase
[59,60]), the gyrase is the primary target in
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P. aeruginosa, making mutations at this level
(gyrA) the first step in resistance [61]. Among
the fluoroquinolones available currently, cipro-
floxacin has the highest affinity for GyrA, and its
inhibitory potency is reduced c. 16-fold in gyrA
mutants. Other quinolones suffer a similar reduc-
tion of activity, which almost always increases the
MIC to above the susceptibility breakpoint. Target
modification (methylation of 16S rRNA) has also
been shown to confer resistance to aminoglyco-
sides [62]. This resistance mechanism could have
spread to P. aeruginosa from aminoglycoside-pro-
ducing Gram-positive organisms [63,64].

Fig. 1 shows the evolution of the susceptibility
patterns of P. aeruginosa for nine major antibiotics
used currently in clinical practice. This analysis is
based on European data collected as part of the
‘Meropenem Yearly Susceptibility Test Informa-
tion Collection’ (MYSTIC) surveillance study
(http://www.mystic-data.org/) and the suscepti-
bility breakpoints proposed by the European
Committee for Antibiotic Susceptibility Testing
(EUCAST; http://www.eucast.org). On average,
there is 60% susceptibility to all drugs except
meropenem (80% susceptibility) and amikacin
(c. 100% susceptibility). A modest trend towards
decreased resistance was observed for some
drugs during the last decade if the cumulative
MIC distributions are considered (causing a
decrease in the MIC50), but this is insufficient to
modify the percentage of strains falling below the
EUCAST clinical susceptibility breakpoints. Per-
haps more importantly, the frequencies of multi-
drug-resistant P. aeruginosa (defined as showing
resistance to at least three main classes of anti-
pseudomonal agents (b-lactams, carbapenems,
aminoglycosides and fluoroquinolones)) [21] are
increasing worldwide, reaching frequencies of up
to 20% in intensive care units in the USA and
>30% in Asia [11,21,33,65,66]. These isolates
combine several mechanisms of resistance, often
present on mobile genetic elements, and are
usually associated with severe adverse clinical
outcomes [21,48,67]. This is also true for isolates
producing ESBLs or carbapenemases [49,68].

Control measures to limit the spread of highly
resistant clones appear to be essential. At the
clinical level, these should include the strict
implementation of infection control measures
(improvement of hand hygiene) aimed at control-
ling and preventing cross-transmission among
patients, within and across units ⁄ wards, and even

among hospitals, and the strict isolation and
restriction of transfer of infected or colonised
patients with multiresistant P. aeruginosa isolates
[46]. At the laboratory level, in-vitro studies,
including quantitative data (MIC determinations),
should be performed on a regular basis to follow
the resistance patterns of the clones present in a
particular hospital. This knowledge is essential in
order to choose the most appropriate antibiotics
for empirical treatment. Studies aimed at deci-
phering the modes of transmission of these clones
would also be of interest when formulating
rational strategies for better control of their
spread.

At the therapeutic level, improvement of anti-
biotic use is a highly efficient strategy for decreas-
ing rates of resistance [65]. Two lines of action
should probably be followed. First, interventions
aiming at reducing antibiotic use in general, and
at restricting the administration of certain specific
drugs, are beneficial [69,70]. Indeed, there is a
strong correlation between antibiotic consump-
tion and resistance rates for P. aeruginosa [71], as
for many other pathogenic bacteria. Antibiotic
rotation (to avoid continuous exposure to the
same drugs) has also been proposed, but no data
support its benefit for resistance control to date.
Second, optimisation of antibiotic dosage regi-
mens, based on the pharmacokinetic ⁄ pharmaco-
dynamic properties of the drugs used, is now
considered to be essential for appropriate treat-
ment of pseudomonal infections [72]. Table 3
shows an application of these principles to the
main anti-pseudomonal agents for which data
concerning optimisation are available. The phar-
macokinetic ⁄ pharmacodynamic breakpoints pro-
posed are largely in agreement with those
suggested by EUCAST (Fig. 1).

D I A G N O S I S

Based on the wide diversity of P. aeruginosa
infections, the frequent spread of epidemic iso-
lates in hospitals, and the high level of drug
resistance in this species, diagnostic procedures
should aim not only to identify the pathogen, but
also to determine its susceptibility to antibiotics.

Isolation and identification of P. aeruginosa
cultures is easy and is based on classical micro-
biological growth, cultural and phenotypic char-
acteristics [73]. It is of note that P. aeruginosa can
lead to false-positive results in immunological
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Fig. 1. Temporal evolution of the MIC distributions of nine antibiotics for clinical isolates of Pseudomonas aeruginosa
between 1997 and 2005. MIC data were extracted from the MYSTIC database (http://www.mystic-data.org/), but were
limited to European countries (including Bulgaria, Croatia, the Czech Republic, Greece, Israel, Italy, Malta, Poland,
Portugal, Romania, Russia, Slovenia, Spain, Switzerland and Turkey). The susceptibility breakpoints (S, susceptible; I,
intermediately-susceptible; R, resistant) are those proposed by EUCAST (http://www.eucast.org); note that no EUCAST
breakpoint has been established to date for piperacillin–tazobactam. The inset tables for each antibiotic give the MIC50s and
the percentage of strains with an MIC of less than or equal to the fully-susceptible breakpoint.
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tests for the detection of Helicobacter pylori [74].
Although phenotypic methods are sufficient to
identify the pathogen in most clinical samples,
molecular typing methods are often necessary,
not only to trace epidemic strains and to detect
outbreaks or cross-transmission in the hospital
setting [75], but also to characterise long-term
colonising isolates with atypical phenotypes, as
have been observed in cystic fibrosis patients [76].
Highly discriminatory techniques, refined over
the past decade, include pulsed-field gel electro-
phoresis [77,78], chromosomal restriction frag-
ment length polymorphism analysis [79], random
amplified polymorphic DNA analysis [80,81],
multilocus sequence typing [82,83], and arbitrar-
ily primed PCR fingerprinting [84]. These tech-
niques are generally available in specialised
sentinel laboratories.

P. aeruginosa can be isolated on selective media
such as cetrimide agar [85]. However, the frequent
occurrence of P. aeruginosa as a colonising organ-
ism means that mere isolation of the bacterium
from a biological sample does not in itself con-
stitute proof of the involvement of P. aeruginosa
in an infectious process. Specific investigations,

e.g., X-rays and other imaging techniques, are
therefore needed to confirm infections in deep
organs.

A key point in laboratory tests for P. aeruginosa
involves determining its susceptibility to anti-
biotics and identification of its resistance mecha-
nisms. Routine procedures include diffusion
methods (disk-diffusion and Etests), and dilution
methods on solid or liquid media (agar, macro-
and microdilutions, and automated systems [86]).
However, these methodologies currently lack
standardisation, as illustrated by a comparison
of existing recommendations from the French
Comité de l’Antibiogramme of the Société Franç-
aise de Microbiologie (CA-SFM; http://www.
sfm.asso.fr/), the British Society of Antimicrobial
Chemotherapy (BSAC; http://bsac.test.tmg.
co.uk/) and the CLSI (http://www.clsi.org/).
Moreover, results are influenced markedly by
several experimental factors. These include the
initial inoculum size (which should be a MacFar-
land 0.5 standard, i.e., 1.5 · 108 CFU ⁄ mL), the
culture medium and its pH (acidic pH reduces the
activity of numerous antibiotics, e.g., aminogly-
cosides), the concentration of ions (divalent

Table 3. Tentative pharmacodynamic breakpoints for anti-pseudomonal agents, based on pharmokinetic ⁄ pharmacody-
namic (PK ⁄ PD) criteria of efficacy and on pharmacokinetic data for conventional dosages, in comparison with the EUCAST
breakpoints

Drug

PK ⁄ PD parameter

predictive of breakpoint

efficacy (mg ⁄ L)

Usual clinical dosage

for serious

infections (mg/L)

Relevant pharmacokinetic

parameter(s) PD EUCASTa

b-Lactams
Piperacillin–tazobactam Time > MIC =

40% (static effect)
to 100% (max. efficacy)
[72]

4.5 g qid [97] Cmax = c. 225 mg ⁄ L,
half-life c. 1 h [193]

3.5 b

Ceftazidime 2 g tid [193] Cmax = c. 170 mg ⁄ L,
half-life c. 2 h [193]

10–40 8 ⁄ 8

Cefepime 2 g tid [193] Cmax = c. 160 mg ⁄ L,
half-life c. 2 h [193]

10–40 8 ⁄ 8

Imipenem Time > MIC =
22% (static effect)
to 100% (max. efficacy)
[35]

1 g tid [193] Cmax = c. 60 mg ⁄ L,
half-life c. 1 h [193]

0.2–15 2 ⁄ 8

Meropenem 1 g tid [193] Cmax = c. 60 mg ⁄ L,
half-life c. 1 h [193]

0.2–15 2 ⁄ 8

Aminoglycosides Cmax ⁄ MIC ‡ 8 [194]
Gentamicin 5 mg ⁄ kg [193] Cmax = c. 18 mg ⁄ L [193] 1.5 4 ⁄ 4

7 mg ⁄ kg [97] Cmax = c. 25 mg ⁄ L [193] 3
Tobramycin 5 mg ⁄ kg [193] Cmax = c. 25 mg ⁄ L 3 4 ⁄ 4
Amikacin 15 mg ⁄ kg [193] Cmax = c. 77 mg ⁄ L [193] 9 8 ⁄ 16

20 mg ⁄ kg [97] Cmax = c. 100 mg ⁄ L [193] 12.5
Fluoroquinolones AUC ⁄ MIC > 100

[72,111]
Ciprofloxacin 400 mg tid [193] AUC = 30 mg.h ⁄ L [193] 0.3 0.5 ⁄ 1
Levofloxacin 500 mg bid [195] AUC = 90 mg.h ⁄ L [195] 1 1 ⁄ 2

aValues are shown as susceptible ⁄ resistant (susceptible, antimicrobial activity associated with a high likelihood of therapeutic success; resistant, antimicrobial activity
associated with a high likelihood of therapeutic failure).
bBreakpoint not yet defined.
bid, the dose indicated is administered twice in 24 h at 12-h intervals; tid, the dose indicated is administered three times in 24 h at 8-h intervals; qid, the dose indicated is
administered four times in 24 h at 6-h intervals.
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cations negatively affect the activity of quinolones
and aminoglycosides), the diffusibility of the drug
in agar for diffusion methods (very poor for
colistin), and the temperature and duration of
incubation. Automated methods (VITEK, VI-
TEK 2, MicroScan, PHOENIX, etc.), used rou-
tinely in most laboratories, are probably no more
reliable, showing poor convergence with micro-
dilution methods (high rates of major errors for
piperacillin–tazobactam, and of minor errors for
cefepime, aztreonam and carbapenems [87–89]),
as these systems monitor the bacterial growth
rates optically. Thus, ‘false drug susceptibility’
may stem from the presence of slowly inducible
resistance mechanisms, and ‘false resistance’ from
the use of too large inocula, which reduce the
activity of cell-wall-active agents [90].

Considering all these difficulties, the concom-
itant use of two independent methods would
ideally be required for determining Pseudomonas
susceptibility, and should include determining
antibiotic MICs. The selection of antibiotics to be
tested is also critical, and should always include
good phenotypic markers of resistance mecha-
nisms. Table 4 suggests a tentative antibiogram,
based on 16 antibiotics. However, the interpretat-
ive reading of susceptibility tests and the recog-
nition of resistance mechanisms based on
phenotypic data are extremely difficult in the
case of P. aeruginosa [91] because of: (i) the
frequent occurrence of several resistance mecha-
nisms affecting, partly or totally, the same drugs;
(ii) the variable efficacy of these mechanisms in
different strains; and (iii) the inappropriateness of
the methodologies used to detect low-level resist-
ance. Moreover, antibiograms are established on
the basis of the clinical interest of antibiotics
rather than on their capacity to distinguish among
resistance mechanisms, and the categorisation
into susceptible (S), intermediately-susceptible
(I) and resistant (R) groups may vary according
to the breakpoints considered. The development
of genotypic tools to detect emerging resistance
mechanisms (as described recently for b-lacta-
mase production and modification in the expres-
sion of efflux pumps or porins [92,93]) would be
very useful for solving these issues in the near
future. Laboratory techniques for detecting most
genes coding for ESBLs and carbapenemases are
available, and may help in performing extended
surveys to detect the spread of novel mechanisms
of resistance.

C U R R E N T T H E R A P E U T I C O P T I O N S

Antimicrobial therapy

Guidelines for the specific management of P. aer-
uginosa infections in patients with artificial venti-
lation [94] and neutropenia [95] have been
proposed by a joint task force of the American
Thoracic Society (ATS) and the Infectious Dis-
eases Society of America (IDSA). However, the
general principles of these guidelines can be
applied to other infections [11,32,96–98] and can
be summarised as follows (see Fig. 2 and Table 3
for antibiotic doses). First, any suspicion of
pseudomonal infection should require bacterio-
logical documentation, including the antibiotic
susceptibility profile. Indeed, reliance on empir-
ical treatment entirely is no longer reasonable in a
world of increasing multidrug resistance. Second,
therapy should be initiated as soon as clinical
samples have been collected, using the best
available knowledge to cover the suspected path-
ogens. Early therapy is associated with better
outcome [99]. Initial therapy will depend on the
patient’s risk-factors and the local epidemiology,
but will usually include an anti-pseudomonal b-
lactam (penicillin, cephalosporin or carbapenem)
associated with either an aminoglycoside or a
fluoroquinolone (preferably ciprofloxacin [60]).
Third, treatment de-escalation and ⁄ or fine-tuning
of the therapy must be mandatory once laboratory
data are available. This is critical to limit antibiotic
pressure and, hence, the selection of resistance,
which frequently occurs during therapy and may
result in a negative clinical outcome [96,100,101].
Finally, the patient’s condition should be
re-evaluated on a regular basis, with appropriate
measurements [13,102,103], to decide whether
antibiotics should be continued.

In all cases, dosages should be adapted to meet
pharmacodynamic criteria of efficacy (Table 3)
[104]. Antibiotics with time-dependent activities,
e.g., b-lactams, should be administered frequently
(e.g., thrice-daily) or in continuous infusion.
However, although the limited clinical data com-
paring the efficacy of these two modes of admin-
istration for b-lactams point towards equivalence
[105], continuous infusion offers the advantages
of increasing the probability of achieving the
pharmacodynamic target [106] while limiting
nursing workload (however, note that there are
hardly any data concerning the clinical
effectiveness of continuous infusion for treatment
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of P. aeruginosa infections). Stability of the antibi-
otic over time under the conditions of adminis-
tration, and compatibility with any other drugs in
the perfusion solution, need to be checked care-
fully [107]. For aminoglycosides, which have
concentration-dependent activity, once-daily
administration maximises peak concentrations,
which allows optimal efficacy and may minimise
toxicity [108–110]. For fluoroquinolones, the total
daily dosage is probably most critical, as well as a
clear understanding that, with current doses,
MICs >0.5 mg ⁄ L tend to markedly increase the
risk of failure and the emergence of resistance
[111,112].

Controversial questions remain regarding the
management of P. aeruginosa infections: (i) the
need to maintain antibiotic combinations [113],
and (ii) the optimal length of antibiotherapy [114].
Recent studies and meta-analyses of infections
caused by non-multiresistant organisms have
failed to find a benefit of antibiotic combinations
if treatment is based on susceptibility data, whe-
ther for sepsis [115], or for ventilator-associated
pneumonia [116]. Yet the outcome is poor when
aminoglycosides are used for monotherapy rather
than in combination with b-lactams [117]. Regard-
ing treatment duration, the trend is also to shorten
the period of antibiotic administration. An 8-day
period of treatment does not worsen the outcome
of patients suffering from ventilator-associated
pneumonia [118], but saves money, reduces eco-
logical pressure, and diminishes side-effects [98].
However, as a slightly higher percentage of
recurrence of pulmonary infection has been
observed, close surveillance of these patients

should be maintained after an antibiotic is dis-
continued.

The situation is much more complex when
confronting multidrug-resistant isolates, for
which the activity of at least three major antibiotic
classes is compromised [21]. It remains to be
established whether particular antimicrobial
agents better select for such multidrug-resistant
strains. As no evidence-based guidelines are avail-
able, the antibiotic selection should be adapted
on a case-by-case basis, taking into account the
susceptibility testing results (preferably the MIC
data). In such cases, combinations of several
agents are usually recommended [96]. Among
the various therapeutic alternatives, colistin has
received renewed interest [119]. This molecule,
discovered in the early 1950s, was abandoned
because of a high incidence of nephrotoxicity
[120]. The mode of action of colistin (disruption of
the cytoplasmic membrane [121]) shelters it from
cross-resistance from other anti-pseudomonal
agents, and is unlikely to lead to the rapid
selection of resistance [122,123]. The drug dis-
plays a concentration-dependent bactericidal
activity [122] and has recently been re-introduced
for the management of pulmonary infections in
cystic fibrosis patients, either by the intravenous
route or in the form of an aerosol [124], with lower
rates of toxicity than reported previously [125]. A
few studies, most of which are observational case
series, have reported a favourable clinical
response in various types of infections caused
by multidrug-resistant P. aeruginosa, including
bacteraemia, pneumonia and meningitis [126–
129]. In-vitro studies also suggest that an associ-
ation with rifampicin is synergic [130], but this
observation needs to be further assessed in
clinical settings [11].

The treatment of lung infections caused by
P. aeruginosa in cystic fibrosis patients raises very
specific additional questions, but also offers new
opportunities. In this disease, colonisation by
P. aeruginosa occurs at an early stage [131], with
its prevalence increasing with age. Questions are
related mostly to: (i) the opportunity of starting
antibiotic treatment aimed at eradication in
patients who have only recently been colonised;
(ii) treatment in patients who are chronically
colonised; and (iii) the selection of antibiotics.
According to the European consensus definition
[132], a chronic respiratory colonisation corres-
ponds to the presence of P. aeruginosa in at least

Suspected P. aeruginosa infection

Culture of blood and of sample from infected site;
antibiotic susceptibility testing

Early empirical antibiotherapy: 
anti-pseudomonal β-lactam

+ aminoglycoside or ciprofloxacin 

24–48 h

New sample analysis ; evalution of clinical response 

Improvement ?
YES No

De-escalation of antibiotics
Treatment duration limited to 8 days,

then re-evaluation

·
·

Resistance ?
Untreated pathogen ?
Complication ?
Abcess ?
Other cause ?

·
·
·
·
·

Fig. 2. General algorithm for the clinical management of
Pseudomonas aeruginosa infections (based on [97]).
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three positive respiratory cultures over a period
of 6 months, with an interval of at least 1 month
between two cultures, but without direct (inflam-
mation, fever, etc.) or indirect (specific antibody
response) signs of infection and tissue damage. At
this stage of the disease, and even earlier (inter-
mittent colonisation), various morphotypes, inclu-
ding mucoid colonies, tend to develop, which are
refractory to antibiotic action [133,134]. Non-
mucoid, sensitive strains are often involved ini-
tially [135–137] but, without early intervention,
irreversible chronic colonisation, most often by
mucoid stains, usually occurs within a few
months.

The definition of chronic colonisation is still a
matter of debate [138,139], but there is no doubt
that this state has a major negative impact on the
patient’s prognosis, as it is associated with an
accelerated decline of respiratory function (forced
expiratory volume in 1 s (FEV1)) [140–142], shor-
tened median life-expectancy [142,143], much
higher treatment costs [144], and a decreased
quality of life. For these reasons, avoiding or
postponing chronic colonisation by P. aeruginosa
has long been considered to be the major chal-
lenge in the care of cystic fibrosis patients [144–
146]. In this context, close microbiological monit-
oring that allows early recognition and treatment
of the first isolates of P. aeruginosa, as well as
patient segregation in cystic fibrosis centres on the
basis of bacteriological status, are regarded as key
factors [146–148]. Early treatment often includes
inhaled colistin or aminoglycoside and ⁄ or oral
ciprofloxacin [149–153], but there is no current
consensus concerning the optimal eradication
regimen for early intervention, and the failure
rate of this approach has been estimated to be
c. 20% [147,151,154].

Arguments for and against early antibiotic
use in such patients have been discussed at
length in the literature (e.g., [132,134,138]).
Arguments against are related to the subsequent
high consumption of antibiotics, with the asso-
ciated risk of selecting multiresistant organisms
in patients who will frequently receive antimi-
crobial agents [155,156]. Arguments in favour
include the easier eradication of non-mucoid
morphotypes, which can protect patients from
further colonisation for several years
[132,134,138]. Although, to date, there is no
evidence of decreased mortality or morbidity, or
of improved quality of life [157,158], current

recommendations encourage the latter strategy,
based on its microbiological success [132]. It has
been suggested that early prophylactic adminis-
tration of inhaled antibiotics might be very
effective [159,160], but this approach needs to
be studied further. In chronically colonised
patients, chronic suppressive antibiotic therapy
with inhaled antibiotics and oral azithromycin is
associated with FEV1 improvement and de-
creased pulmonary exacerbations. Intravenous
treatment might be prescribed only when nee-
ded, or also as a routine 3-monthly elective
regimen [151]. Higher doses of many antibiotics
are often required to achieve effective serum
levels in these patients because of differences in
the volume of distribution and rate of elimin-
ation [161]. Finally, an important factor to be
considered is the possibility of offering appro-
priate antimicrobial treatment to cystic fibrosis
patients outside of the hospital, which is essen-
tial for their quality of life. Potential opportun-
ities include the development of aerosols for the
administration of aminoglycosides and colistin
[162–166], the administration of b-lactams by
continuous infusion using portable home pumps
[167,168], and the possibility of using quinolo-
nes by the oral route in this special paediatric
population [157,169,170]. However, home treat-
ment could be less effective than hospital
treatment, and obviously necessitates close
supervision [171,172].

Surgery

Surgical treatment of pseudomonal infections is
sometimes necessary in order to remove import-
ant collections of bacteria that are poorly access-
ible to antibiotics and to eliminate damaged
tissues. Most surgical applications concern brain
abscesses, infections of ears or eyes, bones or
joints, the heart, and wounds or burns.

T H E F U T U R E O F
A N T I - P S E U D O M O N A L T H E R A P Y

Drugs in the pipeline

In recent years, most research devoted to new
antibiotics in the pharmaceutical industry has
been orientated towards Gram-positive organ-
isms, e.g., methicillin-resistant Staphylococcus
aureus and multiresistant Streptococcus pneumoniae.
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This is all the more unfortunate because the
b-lactams marketed most recently have either
weak (cefepime, cefpirome) or no useful (ertape-
nem) anti-pseudomonal activity. Thus, although
P. aeruginosa infections clearly represent a persist-
ent, as well as an evolving need [173], the
prospects for the next few years are quite poor,
with most of the upcoming drugs being simply
more or less new derivatives of existing families
of antimicrobial agents. A broad-spectrum cepha-
losporin (ceftobiprole), a new carbapenem
(doripenem) and a new fluoroquinolone (sitafl-
oxacin) are currently in phase III clinical trials, but
have not been examined specifically for their anti-
pseudomonal activity. Ceftobiprole was designed
specifically for its activity against methicillin-
resistant Staphylococcus aureus [174], but its MICs
for P. aeruginosa are of the same order of magni-
tude as those of cefepime (MIC50 and MIC90, 2
and 8 mg ⁄ L, respectively [175]). As clinical trials
of ceftobiprole do not include patients with
pseudomonal infections, its registration for the
corresponding indications is unlikely in the near
future.

Doripenem, a derivative of meropenem, shows
slightly improved activity towards P. aeruginosa
[176–178]. Like meropenem, it is subject to efflux
by MexAB–OprM [35]. Population pharmacoki-
netics predict that 500 mg of doripenem admin-
istered over 1 h every 8 h would be effective
against bacterial strains with a doripenem MIC
of <2 mg ⁄ L, which is the case for most Pseudo-
monas isolates tested so far, and that less sus-
ceptible strains could be treated with prolonged
infusions [179]. Doripenem has now received a
‘fast track’ designation from the US Food and
Drug Administration (FDA) for the treatment of
nosocomial pneumonia. It is on the FDA list of
orphan drugs as ‘‘designated’’ (not yet ap-
proved) for ‘‘treatment of bronchopulmonary
infection in patients with cystic fibrosis who
are colonised with P. aeruginosa or Burkholderia
cepacia’’, and has been submitted as a New Drug
application to the FDA for the treatment of
complicated intra-abdominal and complicated
urinary tract infections (December 2006). It is
also under clinical investigation for complicated
skin and soft-tissue infections, and for complica-
ted urinary tract infections [35].

Sitafloxacin has activity comparable to that of
ciprofloxacin towards wild-type strains of
P. aeruginosa, but shows lower MICs for gyrA

or parC mutants, probably because of a better
affinity for the mutated targets [180]. However,
ongoing clinical trials are orientated towards
Gram-positive infections. A phase II, random-
ised, open-label, multicentre study demonstrated
that sitafloxacin was as safe and as well-tolerated
as imipenem for the treatment of pneumonia,
including a small (c. 10%) proportion of nosoco-
mial infections [181]. Further studies are needed
in this setting. Tigecycline, the only broad-spec-
trum antibiotic to be marketed recently [182,183],
is inactive against P. aeruginosa because of efflux
mediated by induction of the MexXY–OprM
system [184].

Faced with such a gloomy picture concerning
new antibiotic molecules, the development of
efflux pump inhibitors seemed at first glance to be
an innovative and promising strategy (based on a
comparison with the successful development and
clinical impact of the inhibitors of b-lactamases
[185]). A large number of interesting molecules,
acting on a series of efflux pumps in different
bacteria, have been designed [186], but their
clinical efficacy has not really been demonstrated
to date. The most advanced compounds in the
series are broad-spectrum inhibitors of Mex
pumps in P. aeruginosa [187,188], with one com-
pound now in phase I of clinical development for
use as an aerosol with cystic fibrosis patients
(http://www.mpexpharma.com). However, this
narrow indication and specific mode of adminis-
tration shows that systemic bioavailability and
toxicity will probably represent major problems
for the successful development of efflux pump
inhibitors.

Immunisation and genetic therapy

A new avenue for preventing chronic pulmonary
colonisation in cystic fibrosis patients, while
limiting antibiotic use, could involve immuno-
therapy. Many efforts have been made in this
direction [189], but clinical efficacy has, to date,
been disappointing, especially for heterologous
strains [190]. However, potential candidate im-
munotherapies are currently being assessed in a
phase III clinical trial [191]. Cystic fibrosis
patients also benefit from other vaccinations
(viruses, Strep. pneumoniae), which contribute to
a reduction in both the number of infective
episodes and the number of antibiotics used
[191].
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C O N C L U S I O N S

At the turn of the third millennium, P. aeruginosa
clearly represents one of the most challenging
pathogenic bacteria. For microbiologists, the
constant evolution of resistance, including the
continuing appearance of new resistance mecha-
nisms, and the complexity of multiresistant phe-
notypes, force the development of appropriate
diagnostic tools. For pharmacologists, optimising
current antibiotic use is a necessity based on the
severity of infections and on resistance issues.
Moreover, the development of new therapeutic
strategies, including drugs acting on new targets
[3], is urgently needed. For infection control
practitioners and clinicians, the implementation
of prophylactic measures aimed at reducing the
risk of nosocomial infection [192], and the use of
treatments based on microbiological and pharma-
cological data [72], should be priorities.
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