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CEM-101 is a novel fluoroketolide with lower MICs than those of telithromycin and macrolides. Our aim was
to assess the cellular accumulation and intracellular activity of CEM-101 using models developed for analyzing
the pharmacokinetics and pharmacological properties of antibiotics against phagocytized bacteria. We used
THP-1 macrophages and Staphylococcus aureus (ATCC 25923 [methicillin (meticillin) sensitive]), Listeria
monocytogenes (strain EGD), and Legionella pneumophila (ATCC 33153). CEM-101 reached cellular-to-extra-
cellular-concentration ratios of about 350 within 24 h (versus approximately 20, 30, and 160 for telithromycin,
clarithromycin, and azithromycin, respectively). This intracellular accumulation was suppressed by incubation
at a pH of =6 and by monensin (proton ionophore) and was unaffected by verapamil (P-glycoprotein inhibitor;
twofold accumulation increase for azithromycin) or gemfibrozil. While keeping with the general properties of
the macrolide antibiotics in terms of maximal efficacy (E,,,.,; approximately 1-log,,-CFU decrease compared to
the postphagocytosis inoculum after a 24-h incubation), CEM-101 showed significantly greater potency against
phagocytized S. aureus than telithromycin, clarithromycin, and azithromycin (for which the 50% effective
concentration [EC,,] and static concentrations were about 3-, 6-, and 15-fold lower, respectively). CEM-101
was also about 50-fold and 100-fold more potent than azithromycin against phagocytized L. monocytogenes and
L. pneumophila, respectively. These differences in EC5,s and static concentrations between drugs were mini-
mized when data were expressed as multiples of the MIC, demonstrating the critical role of intrinsic drug
activity (MIC) in eliciting the antibacterial intracellular effects, whereas accumulation per se was unimportant.
CEM-101 should show enhanced in vivo potency if used at doses similar to those of the comparators tested

here.

Macrolides have long been known for their large volume of
distribution (3, 28), which is related to their ability to accumu-
late inside eukaryotic cells by diffusion/segregation in acidic
compartments, namely, lysosomes and related vacuoles (8, 9).
As a consequence, macrolides have been considered advanta-
geous for the treatment of infections localized in these com-
partments (32, 48). In a more general context, they are
widely recommended for infections caused by typical intra-
cellular pathogens such Legionella and Chlamydia, based on
a large array of both in vitro (7, 17) and clinical (16, 19, 33,
38, 42) data. However, direct quantitative comparisons be-
tween intracellular and extracellular activities using faculta-
tive intracellular pathogens, such as Staphylococcus aureus
or Listeria monocytogenes, suggest that macrolides express
only a minimal fraction of their antibacterial potential in-
tracellularly (5, 34, 36), especially considering their great

* Corresponding author. Mailing address: Unité de Pharmacologie
Cellulaire et Moléculaire, Université Catholique de Louvain, UCL
73.70, Avenue E. Mounier 73, B-1200 Brussels, Belgium. Phone:
3227647371. Fax: 3227647373. E-mail: tulkens@facm.ucl.ac.be.

+ Supplemental material for this article may be found at http://aac
.asm.org/.

¥ Published ahead of print on 29 June 2009.

3734

intracellular accumulation. This minimized antibacterial po-
tential against organisms replicating in phagolysosomes and
related vacuoles is most likely related to acidic pH, which is
known to reduce the activity of macrolides. Another factor
is that some organisms, such as L. monocytogenes, may ac-
tually replicate in other subcellular compartments. In addi-
tion, certain macrolides, such as azithromycin, are subject to
active efflux from macrophages (35), which further contrib-
utes to suboptimal intracellular activity (34). Key progress in
the discovery of new macrolides over the last 20 years has
been heralded mainly by the observation that 11,12-carba-
mate analogs of clarithromycin carrying a lipophilic side
chain show improved activity compared to the parent com-
pound (15). Together with the removal of the cladinose (1),
this led to the discovery and development of the ketolides,
with telithromycin being the first candidate to receive clin-
ical approval. The primary improvement generated by ke-
tolides is activity against erythromycin-resistant organisms
(45, 49), but no true improvement in their activity in the
intracellular environment has been achieved.

CEM-101 is a novel fluoroketolide containing an 11,12-car-
bamate-butyl-[1,2,3]-triazolyl-aminophenyl side chain (Fig. 1).
CEM-101 demonstrates enhanced potency compared to
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FIG. 1. Structural formula of CEM-101. The molecule possesses an 11,12-carbamate-butyl-[1,2,3]-triazolyl-aminophenyl side chain and a
fluorine atom (arrowhead) substituting position 2 of the macrocycle. The molecule is probably monocationic at neutral or moderately acidic pH,
as the calculated pK, of the aminophenyl group is less than 4 (versus ~8.5 for the desosamine).

telithromycin, with activity against telithromycin-intermediate
and telithromycin-resistant organisms. This enhanced activity
of CEM-101 is probably due to a higher binding affinity to the
ribosome (22).

This enhanced activity prompted us to assess the cellular
accumulation and intracellular activity of CEM-101 using mod-
els that have been developed for the study of the intracellular
pharmacodynamics of antibiotics (4, 20). Our data show that
CEM-101 maintains the maximal efficacy of known macrolides
and shows greater potency against intracellular forms of Staph-
ylococcus aureus, Listeria monocytogenes, and Legionella pneu-
mophila than telithromycin, azithromycin, and clarithromycin.
This improved potency of CEM-101 results from the combi-
nation of its higher intrinsic activity against S. aureus and
possibly also L. pneumophila and the decreased detrimental
effect of acidic pH on its activity.

MATERIALS AND METHODS

Cell lines. Experiments were performed with THP-1 cells (ATCC TIB-202;
American Tissue Culture Collection, Manassas, VA), a human myelomonocytic
cell line displaying macrophage-like activity, as described earlier (5).

Assay of the cell-associated macrolides and calculation of the apparent cel-
lular-to-extracellular-concentration ratios. Macrolides were assayed by a micro-
biological method, using S. aureus ATCC 25923 as a test organism and according
to the general procedure described previously (35). Cell proteins were measured
in parallel using the Folin-Ciocalteu/biuret method (23). The cell-associated
contents in macrolides were expressed by reference to the total cell protein
content and converted into apparent concentrations using a conversion factor of
5 pl per mg of cell protein, an average value found for many cultured cells.

Bacterial strains, susceptibility testing, and 24-h dose-response curve studies
with broth. S. aureus ATCC 25923 (methicillin [meticillin] sensitive), L. mono-
cytogenes strain EGD, and L. pneumophila strain ATCC 33153 were used in the
present study. MIC determinations were performed in Mueller-Hinton broth
(for S. aureus) and tryptic soy broth (for L. monocytogenes) after a 24-h incuba-
tion, or in a-ketoglutarate-buffered yeast extract broth (for L. pneumophila) after
a 48-h incubation. For S. aureus studies, 24-h concentration-response experi-
ments in acellular medium were performed in Mueller-Hinton broth.

Cell infection and assessment of antibiotic intracellular activities. Infection of
THP-1 cells and assessment of the intracellular activity of antibiotics were per-
formed as described previously (5, 20) for S. aureus and L. monocytogenes, or
with minor adaptations for L. pneumophila using (i) a multiplicity of infection of

10 bacteria per macrophage and (ii) gentamicin (50 mg/liter) for 30 to 45 min for
the elimination of nonphagocytosed bacteria.

Antibiotics and main reagents. CEM-101, clarithromycin, and telithromycin
were obtained as laboratory standards from Cempra Pharmaceuticals (Chapel
Hill, NC) and azithromycin and linezolid from Pfizer Inc., New York, NY. Cell
culture media and sera were from Invitrogen Corp. (Carlsbad, CA) and Lonza
Inc. (Basel, Switzerland).

Statistical analyses. Curve-fitting statistical analyses were performed with
GraphPad Prism version 4.03 and GraphPad Instat version 3.06 (GraphPad
Software, San Diego, CA).

RESULTS

Cellular accumulation and modulation by acidic pH, mon-
ensin, and effux transporter inhibitors. In the first series of
experiments, we examined the extent of CEM-101 accumula-
tion in THP-1 macrophages and how this accumulation is in-
fluenced by (i) acidic pH, (ii) the addition of monensin, and
(iii) efflux transporter inhibitors. As shown in Fig. 2A, the
cellular uptake of CEM-101 proceeded almost linearly over
time, reaching an accumulation level approximately 350-fold
the extracellular concentration within 24 h. Figure 2B shows
that the accumulation of both CEM-101 and azithromycin was
drastically reduced when the experiments were conducted at
acidic pH, with the change occurring almost entirely when the
pH was brought from 7 to 6. Figure 2C shows that monensin,
which is known to decrease the cellular accumulation of weak
organic bases, also almost completely suppressed the accumu-
lation of both CEM-101 and azithromycin. In contrast, vera-
pamil, an inhibitor of the P-glycoprotein efflux transporter
(P-gp, also known as MDR1), increased the accumulation of
azithromycin without affecting that of CEM-101, whereas gem-
fibrozil, an inhibitor of multidrug resistance proteins (MRP)
and other organic anion transporters did not affect either com-
pound. (Of note, neither verapamil nor gemfibrozil affected
the accumulation of telithromycin or clarithromycin [data not
shown].) Finally, we examined the efflux of CEM-101 from
cells incubated with 10 mg/liter of CEM-101 for 1 h and then
transferred into drug-free medium. Efflux proceeded in a bi-
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FIG. 2. Accumulation of CEM-101 versus comparators in THP-1 cells at 37°C (all drugs at an extracellular concentration of 10 mg/liter).
(A) Kinetics of accumulation (AZM, azithromycin; C,, intracellular concentration; C, extracellular concentration); (B) influence of the pH of the
culture medium on the accumulation (30 min) of CEM-101 (solid symbols and solid line) and azithromycin (open symbols and dotted line);
(C) influence of monensin (50 wM; 2-h incubation), verapamil (150 wM; 24-h incubation), or gemfibrozil (250 wM; 24-h incubation) on the cellular
accumulation of azithromycin and CEM-101. All values are means * standard deviations (SD) of three independent determinations (when not
visible, SD bars are smaller than the symbols).

modal fashion, with half of the cell-associated drug being re- with azithromycin demonstrating the most significant loss of
leased within approximately 10 min, and a slower release phase activity. CEM-101 retained the most activity, consistently
of several hours (data not shown) followed. showing the lowest MICs throughout the entire pH range in-

Susceptibility toward S. aureus ATCC 25923, Listeria mono- vestigated, with values (mg/liter) ranging from 0.06 (pH 7.4) to
cytogenes EGD, and Legionella pneumophila ATCC 33153. 0.5 (pH 5.5) for S. aureus (ATCC 25923) and 0.0039 (pH 7.4)
CEM-101 showed lower MICs than azithromycin against the to 0.25 (pH 5.5) for L. monocytogenes (EDG). For L. pneumo-
three selected organisms (S. aureus, 0.06 and 0.5 mg/liter; L. phila (data not shown), the MIC of CEM-101 increased from
monocytogenes, 0.004 and 1 mg/liter; and L. pneumophila, 0.004 0.005 to 0.01 and that of azithromycin from approximately 0.01
and 0.016 mg/liter) in conventional susceptibility testing. The to 0.25 mg/liter when the pH of the broth was decreased from

MICs of CEM-101, telithromycin, azithromycin, and clarithro- 7.4 to 6.5 (no determination could be made at lower pH values
mycin against S. aureus and L. monocytogenes were then mea- because of absence of growth).

sured in broths adjusted to pH values ranging from 5.5 to 7.4. Time and concentration effects against extracellular and
The range was selected to cover the values at which the anti- intraphagocytic S. aureus. Short-term (6-h) time-kill curves
biotics could be exposed in the extracellular milieu or intracel- were obtained for CEM-101 in comparison with those for

lularly for the two organisms considered. As illustrated in Fig. azithromycin against S. aureus (ATCC 25923) in broth and
3, all four drugs showed a marked decrease in potency against after phagocytosis by THP-1 macrophages using two single

both organisms when the pH was decreased from 7.4 to 5.5, fixed concentrations of 0.7 and 4 mg/liter. The lower concen-
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FIG. 3. Comparative susceptibilities of S. aureus ATCC 25923 and L. monocytogenes EGD to CEM-101, telithromycin, azithromycin, and
clarithromycin, based on MIC determinations in pH-adjusted broth.
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FIG. 4. Short-term time-kill effect of CEM-101 and azithromycin on S. aureus (ATCC 25923) in broth (left panels; pH 7.4) or after phagocytosis
by THP-1 macrophages (right panels). Both drugs were used at an extracellular concentration of either 0.7 (top panels) or 4 (bottom panels)
mg/liter. MICs of CEM-101 and azithromycin were 0.06 and 0.5 mg/liter, respectively. All values are means = standard deviations (SD) of three
independent experiments (when not visible, SD bars are smaller than the symbols).

tration was chosen to be relevant to the serum concentration of
azithromycin (2) and CEM-101 (27, 39), and the higher con-
centration was selected to be above the MIC of azithromycin
for the organisms of interest. Results presented in Fig. 4 show
that under these conditions, only CEM-101 was able to signif-
icantly decrease CFU in broth as well as in THP-1 macro-
phages at the 0.7-mg/liter concentration. At the 4-mg/liter con-
centration in broth, azithromycin eventually achieved the same
antibacterial effect as CEM-101, but at a lower rate (5 h com-
pared to 1 h). In THP-1 macrophages, no consistent activity
was detected for azithromycin, even at the 4-mg/liter concen-
tration, whereas CEM-101 again achieved a reduction of ap-
proximately 1.5 log,, CFU, similar to the magnitude seen at
the 0.7-mg/liter concentration. In all situations with CEM-101,
the maximal decrease of CFU was obtained within 1 h and was
maintained thereafter.

We then performed concentration-response experiments at
a fixed time point (24 h) to obtain the pertinent pharmacolog-
ical descriptors of CEM-101 activity (relative potency [50%
effective concentration {ECs,}], apparent static concentration
[C4], and relative maximal efficacy [E,,,,] [see reference 5 for
details and illustration]) in comparison with clarithromycin,
azithromycin and telithromycin activity. Data are presented in

Fig. 5 as a function of (i) weight concentrations (mg/liter) and
(ii) multiples of the MICs (as determined in broth at pH 7.4).
The numerical values of the corresponding pharmacological
descriptors are shown in Table 1. The activities in both broth
and THP-1 macrophages developed in a concentration-depen-
dent fashion (following the law of mass action), as denoted by
the sigmoidal shape of each best-fit function (Hill equation). In
broth, the relative efficacy of CEM-101 (E,,,,, of —1.37 log,,)
was similar to that of the other drugs (E,,,, values of —1.00 to
—1.41 log,,). In THP-1 macrophages, the relative efficacy of
CEM-101 was significantly decreased compared to that in
broth (E,,,, of —0.86 log,,), but not to the same extent as those
of the other drugs, which essentially became bacteriostatic only
(E max Values of 0.04 to —0.29 log,,). On a weight basis, CEM-
101 had higher relative potencies (lower Es, values) and lower
static concentrations (lower C values) than all three compar-
ator drugs in both broth and in THP-1 macrophages. When the
data were analyzed as a function of equipotent concentration
(multiples of the MIC), these differences in ECs, values were
reduced, indicating that the MIC was the main driving param-
eter in this context. In broth, even when analyzed as multiples
of the MIC, CEM-101 and clarithromycin still showed signifi-
cantly lower ECyys than telithromycin and azithromycin. Of
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FIG. 5. Concentration-effect relationships for CEM-101, telithromycin, clarithromycin, and azithromycin toward S. aureus (ATCC 25923) in
broth (left panels) and after phagocytosis by THP-1 macrophages (right panels). The ordinate shows the change in CFU (A log CFU) per ml
(broth) or per mg of cell protein (THP-1 macrophages) at 24 h compared to the initial inoculum. The abscissa shows the concentrations of the
antibiotics as follows: (i) top panels, weight concentrations (in mg/liter) in broth (left) or in the culture medium (right) and (ii) bottom panels,
multiples of the MIC as determined in broth at pH 7.4. All values are means * standard deviations (SD) of three independent experiments (when
not visible, SD bars are smaller than the symbols). Statistical analysis based on global analysis of curve-fitting parameters (one-way analysis of
variance); the only significant difference is between CEM-101 and azithromycin in broth (P = 0.04). Numerical values of the pertinent
pharmacological descriptors and statistical analysis of their differences are shown in Table 1.

note, the relative potencies of all four drugs were systemati-
cally improved when tested in THP-1 macrophages compared
to broth (lower ECss, even when expressed in multiples of the
MIC), indicating a corresponding 4- to 16-fold enhancement of
apparent intrinsic activity.

Modulation of the intracellular activity toward S. aureus by
P-gp inhibitors. As verapamil increased the accumulation of
azithromycin but not that of CEM-101, telithromycin, or clar-
ithromycin, we examined whether it would also modulate the
activities of these four drugs toward phagocytized S. aureus in
a differential fashion. Concentration-effect experiments using
the same protocol as that shown in Fig. 5 were therefore
performed in the presence of verapamil (100 wM). Verapamil
did not modify the response to CEM-101, clarithromycin, or
telithromycin; however, it significantly increased both the rel-
ative potency (decreased ECs,) and the relative efficacy (de-
creased E, ) of azithromycin. The increased relative potency

max.

and efficacy eventually made the azithromycin response indis-
tinguishable from that of CEM-101 (see data in Fig. SP1 in the
supplemental material). Gemfibrozil had no effect on any of
the four antibiotics.

Activity against intraphagoctic L. monocytogenes and L.
pneumophila. In the last series of experiments, we used the
same approach as that used for S. aureus to assess the activities
of CEM-101 and azithromycin against phagocytized L. mono-
cytogenes and L. pneumophila to obtain information on con-
centration-effect relationships and on the corresponding per-
tinent pharmacological descriptors. As shown in Fig. 6 (see
also Table 2 for numerical values), a relationship compatible
with the Hill equation was observed in all cases, although the
limited growth of L. pneumophila made the fitting of functions
somewhat more uncertain. When the data were plotted against
weight concentration, it clearly appeared that CEM-101 had a
much higher relative potency (lower ECs,) than azithromycin
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FIG. 6. Concentration-effect relationships for CEM-101 and azithromycin toward intraphagocytic L. monocytogenes (strain EGD, left panels)
and L. pneumophila (strain ATCC 33153, right panels). The ordinate shows the change in CFU (A log CFU) per mg of cell protein at 24 h (L.
monocytogenes) or 48 h (L. pneumophila) compared to the initial postphagocytosis inoculum. The abscissa shows the concentrations of the
antibiotics as follows: (i) top panels, weight concentrations (in mg/liter); (ii) bottom panels, multiples of the MIC as determined in broth at pH
7.4. All values are means * standard deviations (SD) of three independent experiments (when not visible, SD bars are smaller than the symbols).
Numerical values of the pertinent pharmacological descriptors and statistical analysis of their differences are shown in Table 2.

of >6 (24), and is therefore dicationic intracellularly. CEM-
101, however, possesses a fluoro substituent in position 2,
which should make it more lipophilic than clarithromycin or
telithromycin. Additional biophysical studies aiming at deter-
mining the ratio of the permeability constants of the unionized
and ionized forms of CEM-101 in comparison with clarithro-
mycin and telithromycin should be very informative in this
context, as this parameter is as critical as the number of ion-
izable functions in determining the level of cellular accumula-
tion of weak organic bases (13). In another context, the greater
cellular accumulation of CEM-101 is probably partially due to
its insusceptibility to P-gp-mediated efflux (which is expressed
by THP-1 macrophages under our culture conditions [21]) in
contrast to azithromycin.

Potential improvement in the expression of CEM-101 activ-
ity in the intracellular milieu compared with that of azithro-
mycin is strongly suggested by the experiments that examined

the effect of acid pH on the MIC of CEM-101 against S. aureus.
Intraphagocytic S. aureus survives and multiplies in the acidic
environment of phagolysosomes of THP-1 cells (21, 36), which
may explain why CEM-101 systematically shows a higher rel-
ative potency (lower ECs, and C,) against this organism than
azithromycin. The differential effect of acid pH on CEM-101
and azithromycin is probably also important to explain our
observations with intraphagocytic L. pneumophila, as the dif-
ferences between the two antibiotics cannot be fully explained
either by differences in the MICs (as measured in broth by
conventional techniques) or by the potentially greater accumu-
lation of CEM-101. Interestingly, recent data suggest that ac-
tive multiplication of the intracellular forms of L. pneumophila,
contrary to what was originally thought, may require their
transit and sojourn in an acidic vacuole with an average pH of
5.6 (40). While the MICs of L. pneumophila could not be
determined at this low value because of the lack of bacterial
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Figure SP1. Concentration-effect relationships for CEM-101 (left panel) and

azithromycin (middle panel) in the absence (open symbols) or in the presence of

100 pM verapamil (closed symbols) towards S. aureus (ATCC 25923) after

phagocytosis by THP-1 macrophages (the right panel compares the results obtained

for CEM-101 and azithromycin in the presence of verapamil). The ordinate shows

the change in CFU (A log CFU) per mg of cell protein at 24 h compared to initial

inoculum. The abscissa shows the concentrations of the antibiotics in the culture

medium as multiples of the MIC (determined in broth at pH 7.4). All values are

means + SD deviations of 3 independent experiments (when not visible, SD bars are

smaller than the symbols). Statistical analysis (global unpaired t-test [two tailed] of

the parameters of the non-linear fitted functions [Hill equation]) of CEM-101 vs.

azithromyecin: the only significant difference is between azithromycin without and with

verapamil (P < 0.0001); similar conclusions are reached when performing statistical

analyses of the differences between the pertinent pharmacological descriptors (Emax,

ESO! CS) .
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