
ORI GINAL RESEARCH

Search for monoglyceride lipase inhibitors: synthesis
and screening of arylthioamides derivatives

Coco N. Kapanda Æ Giulio G. Muccioli Æ
Geoffray Labar Æ Nihed Draoui Æ Didier M. Lambert Æ
Jacques H. Poupaert

Received: 17 April 2008 / Accepted: 31 July 2008 / Published online: 17 September 2008
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Abstract Monoglyceride lipase (MGL) is the enzyme responsible for the termi-

nation of 2-arachidonoylglycerol (2-AG) signalling, an endogenous ligand for the

G-protein coupled cannabinoid receptors CB1 and CB2. Its known abundance and

physiological roles emphasize the interest of MGL as an attractive therapeutic

target. Search for MGL inhibitors was undertaken by screening an arylthioamide

series. The evaluation of arylthioamides derivatives activity as MGL inhibitors

measured by the hydrolysis of [3H]-2-oleoylglycerol by human purified MGL led to

the identification of (2-chloro-phenyl)-morpholin-4-yl-methanethione (2) and (3-

nitro-phenyl) morpholin-4-yl-methanethione (12), which moreover exhibit good

selectivity compared with human fatty acid amide hydrolase inhibition.

Keywords Monoglyceride lipase � 2-Arachidonoylglycerol �
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Introduction

The endocannabinoid system is involved in many physiopathological processes, in

particular the regulations of pain, cognition, appetite, and cellular proliferation

(Lambert and Fowler, 2005). Among the endogenous ligands, 2-arachidonoylglyc-

erol (2-AG) and arachidonoylethanolamide (AEA) are considered the most important

ligands of the CB1 cannabinoid receptors (Devane et al., 1992; Mechoulam, 1995;

Sugiura et al., 1995), which are predominantly located on presynaptic terminals in

the central nervous system, and CB2 cannabinoid receptors expressed mainly but not
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exclusively in immune cells (Facci et al., 1995; Galiegue et al., 1995; Ishac et al.,
1996).

AEA, a so-called trans-endocannabinoid, behaves as a partial agonist at the

cannabinoid receptors, and is able to activate other receptors such as transient

receptor potential vanilloid 1 (TRPV1), peroxisome proliferator-activated receptor

gamma (PPARgamma), and NMDA receptor. Its levels in the brain are comparable

with those of other neurotransmitters such as dopamine or serotonin (Saario and

Laitinen, 2007; Sagan et al., 1999). On the other hand 2-AG, considered by several

authors as a true endocannabinoid, is a full agonist at the cannabinoid receptors. Its

activity on other receptors have not been reported so far (Wilson and Nicoll, 2001;

Kishimoto et al., 2004).

AEA is thought to be transported into the cell by a putative specific transporter

and hydrolyzed by the serine hydrolase fatty acid amide hydrolase (FAAH) (Cravatt

et al., 1996). Similarly, 2-AG is thought to be removed from its sites of action by

cellular uptake. Inside the cells, 2-AG is primarily hydrolyzed by monoglyceride

lipase (MGL) (Di Marzo et al., 1994; Hillard et al., 1997; Moore et al., 2005).

Because endocannabinoids are rapidly inactivated by cellular reuptake followed by

intracellular hydrolysis by specific enzymes (Hashimotodani et al., 2007; Dinh

et al., 2002; Muccioli et al., 2007), in vivo cannabimimetic effects of the

endocannabinoids are rather weak and non-lasting.

An increase in endocannabinoids levels could lead to several beneficial therapeutic

effects including treatment of pain, inflammation, and mood control (Saario et al.,
2006; Pacher et al., 2006). Thus, inhibition of FAAH and MGL represents a convenient

way to elevate endocannabinoid levels, thereby increasing CB1/CB2 cannabinoid

receptors activity. As endocannabinoids are biosynthesized upon demand, by inhibiting

FAAH or MGL their effect could be enhanced in a more physiological manner when

compared with the administration of synthetic cannabinoids (Jayamanne et al., 2006;

Kathuria et al., 2003). In fact, a number of potent FAAH inhibitors have been reported,

including the nonselective methyl arachidonylfluorophosphonate (Deutsch et al.,
1997), hexadecylsulfonyl fluoride, the selective URB597, OL-53, and OL-135 (Labar

and Michaux, 2007). With respect to MGL, only a few inhibitors have been reported

(such as URB602 and NAM), and so far these inhibitors lack selectivity (Vandevoorde

et al., 2007). Note that only N-arachidonylmaleimide (NAM) displays some selectivity

for MGL compared with FAAH (Saario et al., 2005).

Herein we report the synthesis and screening of an arylthioamide series for

potential MGL inhibitors. Some hits were identified and further characterized for

their inhibition of MGL and FAAH by determining their pI50 values using human

recombinant MGL and FAAH.

Results and discussion

Chemistry

The arylthioamide derivatives reported in this study (Table 1) were obtained using

the synthetic pathways outlined below.
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Table 1 Structures of arylthioamides synthesized

X

Y

Z

N

S

R3

R2

n

Compounds X Y Z n

HN
R3

R2 Method

1 H H H 0 C4H9NO A

2 Cl H H 0 C4H9NO B

3 H Cl H 0 C4H9NO A

4 H H Cl 0 C4H9NO A

5 Cl H Cl 0 C4H9NO B

6 H Cl Cl 0 C4H9NO A

7 H H Br 0 C4H9NO A

8 OH H H 0 C4H9NO A

9 H H OH 0 C4H9NO A

10 H H C6H11 0 C4H9NO A

11 H H C6H5 0 C4H9NO A

12 H NO2 H 0 C4H9NO A

13 H H N(CH3)2 0 C4H9NO A

14 H H COOCH3 0 C4H9NO A

15 H H H 1 C4H9NO A

16 H H CH3 1 C4H9NO A

17 H H Cl 1 C4H9NO A

18 H OCH3 OCH3 1 C4H9NO A

19 H H C6H5 1 C4H9NO A

20 Cl H H 1 C4H9NO B

21 H H H 0 C5H11N A

22 H CH3 H 0 C5H11N A

23 H H H 0 C8H11N A

24 H OH OH 0 C8H11N A

25 H H COOCH3 0 C8H11N A

26 H H Br 0 C8H11N A

27 H H Cl 0 C8H11N A

28 Cl H H 0 C8H11N B

29 Cl H Cl 0 C8H11N B

30 H Cl Cl 0 C8H11N A

31 H H F 0 C8H11N A

32 H H C6H5 1 C8H11N A

C4H9NO, C5H11N, C8H11N refer, respectively, to morpholine, piperidine, and phenethylamine. Note that,

for phenethylamine R2 is an hydrogen atom
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Willgerodt–Kindler reaction (method A): The Willgerodt–Kindler reaction was

the main route used in the synthesis of these derivatives and involves the reaction

between an aldone (aldehyde or ketone), sulfur, and a primary or secondary amine

to yield a thioamide derivative (Fig. 1). Note that, when applied to an arylalkylk-

etone, this reaction behaves as an autoredox system in which the carbonyl is reduced

while the terminal methyl group of the alkyl side chain is oxidized. This reaction,

overall, has good yield (60–70%) (Poupaert et al., 2004; Rolfs and Liebscher,

1998).

Amide thionation (method B): When the Willgerodt–Kindler reaction (method A)

was found to be unsatisfactory, for instance, when an aldehyde or ketone having a

chlorine substituent at the ortho position of the aromatic ring were used (e.g.,

compounds 2, 20, and 28), thionation of the amide to thioamide by using P4S10/

Al2O3 in dioxane was used (Fig. 2), with yields ranging from 62% to 93% (Poupaert

et al., 2005).

With respect to the amines, we mainly used morpholine. We also synthesized

some derivatives using the primary amine phenethylamine and the cyclic amine

piperidine to allow for the establishment of preliminary structure–activity relation-

ships. When considering the aromatic ring, we used phenyl ring substituted by

different groups: alkyl, halogeno, nitro, phenyl, alkylamine, hydroxyl. Depending

on the series, a spacer between the phenyl and the thioamide was introduced (i.e.,

n = 1 or 0). The compounds synthesized are summarized in Table 1.

To determine the putative relevance of the thioamide function, we synthesized

some amides and amines of similar substitution pattern. The amides corresponding

to the thioamides 2, 12, and 19 (i.e., 33–35, Fig. 3 and Table 2) were obtained by

action of substituted benzoyl chloride derivatives on amines. Similarly, to obtain the

tertiary amines derivatives (36–38) the corresponding amides were reduced by

action of LiAlH4 in anhydrous diethyl ether (Fig. 3).

N

O

R3

R2

R1

n

N

S

R3

R2

R1

n
P4S10 / Al2O3

Dioxane

n = 0; 1

Fig. 2 Thionation of amides to thioamides. Reagents and conditions: amide (2.5 mmol), P4S10/Al2O3

(1 g), and anhydrous dioxane (20 mL). Reflux 3 h, filtered on ice, and precipitate recrystallized from
ethanol to yield the corresponding thioamide

O

H

R1
n

N

S

R3

R2

R1

n

R2

HN R3

PTSAS8 ,

n = 0;1

Fig. 1 Willgerodt–Kindler reaction. Reagents and conditions: aldehyde or ketone (0.2 mol), sulfur
(0.2 mol), p-toluenesulfonic acid monohydrate (PTSA; 1 g), and amine (0.41 mmol). Reflux 4 h, filtered,
and recrystallization from ethanol
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Pharmacological evaluation

Hydrolysis of tritiated 2-oleoylglycerol by human monoglyceride lipase (Fig. 4)

was used to evaluate the ability of our compounds to inhibit MGL esterase activity

(Labar et al., 2007).

The compounds were first screened at 10 lM and 100 lM. The compounds

showing a good inhibition at 10 lM were further characterized by determining their

pI50 values in inhibiting MGL activity (Table 2).

R1
N

R2

R3

LiAlH4

(C2H5)2O

H2O, 0°C
Cl

O

R1

N

O

R1

R2

R3

R2

HN R3

CH2Cl2, N2 TEA,

Fig. 3 Synthesis of amides and amines derivatives. Amides, reagents and conditions: substituted benzoyl
chloride (0.05 mol), amine (0.1 mol), triethylamine (0.05 mol), methylene chloride (100 mL). Stirred for
12 h from 0�C to room temperature, under inert atmosphere. Crystallization of amide from ethanol.
Amines, reagents and conditions: amide (11 mmol), LiAlH4 (50 mmol), anhydrous diethyl ether
(200 mL) and ice. The organic phase is removed to afford the amine (oil)

Table 2 Structures of arylamides and arylamine synthesized

N

O

R2

R3

X

Y

Z

N
R2

R3

X

Y

Z

33-35 36-38

Compounds X Y Z

HN
R3

R2

33 Cl H H C4H9NO

34 H H Cl C4H9NO

35 H H C6H5 C4H9NO

36 Cl H H C4H9NO

37 H H Cl C4H9NO

38 H H C6H5 C4H9NO

O
O

OH

OH
OH

O
OH

OH
HO

*

*

*

*

*
*

+
MGL

N
H

O
OH

O
OHOH H2N+

*

* *

*

FAAH

Fig. 4 [3H]-2-OG hydrolysis by human MGL and [3H]-AEA hydrolysis by human FAAH
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In order to evaluate the selectivity of our compounds for MGL inhibition,

compared to FAAH, we measured, according to the same principle, the hydrolysis

of tritiated anandamide by human FAAH (Labar et al., 2008). This is an important

element because current MGL inhibitors usually lack selectivity over FAAH.

Table 3 reports the pI50 values obtained for MGL and FAAH inhibition.

According to the results summarized in Table 3, the arylthioamide derivatives

are monoglyceride lipase inhibitors. Note that compounds 2 and 11 have pI50 values

close to the value we reported for the reference MGL inhibitor URB602 (Labar

et al., 2007). With respect to the amine moiety of the thioamide, morpholine-

bearing compounds (e.g., 2, 12, and 19) show higher activity compared with others

amines. The substitution on the aryl moiety is crucial for the activity. Indeed halides

and phenyl when used as substituents increase significantly monoglyceride lipase

inhibition, whereas an unsubstituted aryl moiety (e.g., 1 and 21) leads to inactive

compounds. On the other hand, substitution of the aryl with an amine decreases the

activity (13). Finally the substituent’s position seems to be very important; in fact,

derivatives with ortho and para substitution are potent inhibitors compared with

meta substitution (e.g., compare 2 and 4 with the inactive 3). The spacer arm has an

Table 3 pI50 values for MGL and FAAH inhibition

Compound Inhibition (pI50) Compound Inhibition (pI50)

MGL FAAH MGL FAAH

1 \3 \3 20 4.61 ± 0.06 \3

2 4.70 ± 0.03 \3 21 \3 \3

3 \3 \3 22 \3 4.21 ± 0.09

4 4.11 ± 0.07 3.52 ± 0.03 23 \3 \3

5 \3 \3 24 3.28 ± 0.09 3.14 ± 0.03

6 \3 \3 25 4.58 ± 0.03 \ 3

7 4.50 ± 0.04 \3 26 4.01 ± 0.11 \3

8 4.22 ± 0.01 \3 27 3.36 ± 0.05 3.39 ± 0.04

9 3.69 ± 0.05 3.25 ± 0.03 28 3. 78 ± 0.09 \ 3

10 \3 \3 29 4.10 ± 0.07 \ 3

11 4.71 ± 0.07 4.51 ± 0.09 30 4.12 ± 0.04 4.27 ± 0.01

12 5.02 ± 0.08 3.61 ± 0.05 31 \3 \3

13 \3 \3 32 3.27 ± 0.02 3.14 ± 0.04

14 4.51 ± 0.04 \3 33 \3 \3

15 \3 \3 34 \3 \3

16 4.62 ± 0.15 4.31 ± 0.09 35 \3 \3

17 4.83 ± 0.20 4.11 ± 017 36 \3 \3

18 \3 \3 37 \3 \3

19 5.24 ± 0.20 4.51 ± 0.19 38 \3 \3

Values are the mean ± standard error on the mean (SEM) from three independent experiments performed

in duplicate. Note that, the reference MGL inhibitor URB602 displays in our hands a pI50 value equal to

5.00 ± 0.11 (Labar et al., 2007)
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influence on MGL inhibition as evidenced, for example, by compounds 17
(pI50 = 4.8) and 4 (pI50 = 4.1). High activity was obtained with phenyl as

substituent (e.g., 19) whereas good selectivity, compared with FAAH inhibition,

was obtained with halides substituents (e.g., 2).

The synthesis and pharmacological evaluation of amides (33–35) and amines

(36–38) corresponding to the active thioamides 2, 4, and 19 evidenced that the

thioamide moiety is crucial to the inhibition of MGL by this series of compounds.

Indeed, corresponding amide and amine derivatives were devoid of activity against

both MGL and FAAH.

Interestingly, following thioamide synthesis, the crude crystallized products

showed strong inhibition of MGL activity. However, this inhibition was found to be

decreased after extensive purification using flash chromatography on silica gel

column and further recrystallization from ethanol. For instance, compound 2
exhibited pI50 values before and after column purification of 6.20 and 4.70,

respectively, suggesting the inhibitory activity of some contaminant.

To investigate this issue, elemental analysis was undertaken on the initial

products and showed the presence of excess sulfur compared with the expected

calculated value. This impurity was absent following flash chromatography and

recrystallization of the compounds. In this regard, of interest is the report by

Piomeli’s group of a similar problem. Indeed, the activity on MGL initially

attributed to URB754 (Makara et al., 2005) was actually due to the presence of a

bis (methylthio) mercurane impurity in their initial batch of URB754 (Tarzia

et al., 2007). These two examples highlight once again the risk of evaluating

chemical libraries of compounds of insufficient purity during the drug discovery

process. Careful resynthesis and purification of the initially discovered hits have

been needed to definitely confirm the MGL inhibition potential of these

compounds. In this regard, note that the pI50 values reported in Table 3 were

obtained for compounds that were purified by column chromatography and

subsequently crystallized.

Conclusions

We have shown that arylthioamides derivatives are monoglyceride lipase inhibitors.

The compounds reported in this study will constitute useful templates for designing

new monoglyceride lipase inhibitors. Indeed, their structure is characterized by a

relatively low molecular weight and a log P value around 3, which will allow further

possibilities of pharmacomodulations.

Experimental section

General procedures

All reagents were purchased from Acros organics or Sigma-Aldrich. Nuclear

magnetic resonance (NMR) spectra were taken by using a Bruker 400

Med Chem Res (2009) 18:243–254 249



UltrashieldTM. Chemical shifts (d) are reported relative to the tetramethylsilane peak

set at 0 ppm. In the case of multiplets the signals are reported as intervals. Signals

are abbreviated as s: singlet; t: triplet; m: multiplet. Melting points were determined

in open capillaries using the Electrothermal type IA 9000, apparatus and are

reported uncorrected. Mass spectra were recorded by using a Finnigan MAT 44S,

with an ionization voltage.

Willgerodt–Kindler reaction

A 100-mL round-bottomed flask was charged with 0.2 mol aldone, 1 g p-

toluenesulfonic acid monohydrate (PTSA), 0.41 mol amine, and 0.2 mol sulfur.

The flask was equipped with a reflux condenser and was heated at reflux for 4 h. The

resulting reddish-brown solution was filtered and poured into 100 mL stirred hot

methanol (55–60�C). The wall of the beaker was scratched with a glass rod for

seeding. The beaker was sealed with aluminum foil and put into a refrigerator for

6 h. The resulting crystalline product was filtered and washed twice with ice-cold

methanol and recrystallized from ethanol.

Synthesis of amides

A 250-mL round-bottomed flask was charged with amine (1.5 mol) in methylene

chloride, triethylamine (1.5 mol); under cooling, a specific acyl chloride (1 mol) in

methylene chloride was added dropwise. The mixture was stirred overnight. The

solution was washed with water to remove triethylamine salt, and evaporated by

using a rotary evaporator. The residue was crystallized from ethanol.

Thionation of amides

One gram of P4S10/Al2O3 reagent (0.85 mmol) was suspended in a solution of the

amide (2.5 mmol) in 10–25 ml dry dioxane. The reaction was stirred and refluxed

for 1 h, and filtered. The filtrate was poured on to ice (150 g) and the resulting

mixture was stirred for 0.5 h. The precipitate was filtered and recrystallized from

ethanol. The Al2O3-supported P4S10 reagent was prepared by grinding together in a

mortar 6.0 g of tetra phosphorus decasulfide with 10.0 g basic alumina until a

homogeneous powder was obtained. The reagent was kept in a desiccator in a closed

vessel before use.

Reduction of amides to amines

A 500-mL round-bottomed flask was charged with amide (11 mmol) in anhydrous

diethyl ether (200 mL). Lithium aluminium hydrid was added. The mixture was

stirred and reflux for 3 h. Ice was added, the organic phase extracted, and the

solvent removed under reduced pressure.

The structures for all synthesized compounds, after purification by column

chromatography and recrystallization, were consistent with their 1H NMR, 13C

NMR, infrared (IR), and mass spectra.
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Characterization of original compounds

(4-Cyclohexyl-phenyl)-morpholin-4-yl-methanethione (10)

1H-NMR (400MHZ): (CDCl3) d ppm: 1.21, 1.47 (m, 5H), 1.65, 1.85 (m, 5H), 2.50

(s,1H), 3.68 (2H, s), 3.86 (s, 2H), 4.40 (4H, s), 7.26 (m, 4H). 13C-NMR: (CDCl3) d
ppm: 26.07, 26.79, 34.26, 44.38, 49.70, 52.60, 66.55, 66.81, 126.07, 139.93, 149.16,

201.48. MS: m/z = 289. m.p.: 143-144�C.

2-Biphenyl-4-yl-1-morpholin-4-yl-ethanethion (19)

1H-NMR (400 MHZ): (CDCl3) d ppm: 3.17 (t, 2H), 3.45 (t, 2H), 3.55 (t, 2H), 3.73

(t, 2H), 4.35 (s, 2H), 7.32–7.52 (m, 9H). 13C-NMR: (CDCl3) d ppm: 50.18, 50.27,

50.85, 66.19, 66.38, 127.01, 127.46, 127.65,128.24, 128.82, 134.90, 140.14, 198.52.

MS: m/z = 297. m.p.: 73-74�C.

4-Phenethylthiocarbamoyl-benzoic acid methyl ester (25)

1H-NMR (400 MHZ): (CDCl3) d ppm: 3.09 (t, 2H), 3.24 (t, 2H), 3.89 (s, 3H), 4.04

(s, 1H), 7.29–7.96 (m, 9H). 13C-NMR: (CDCl3) d ppm: 33.43, 47.24, 52.09, 126.27,

126.70, 128.47, 128.66, 129.47,131.73, 137.81, 145.23, 166.01, 197.85. MS: m/

z = 299. m.p.: 138–139�C.

2-Chloro-N-phenethyl-thiobenzamide (28)

1H-NMR (400 MHZ): (DMSO-d6) d ppm: 3.06 (t, 2H), 3.91 (t, 2H,), 4.40 (s, 1H),

7.26–7.57 (m, 9H) 13C-NMR: (DMSO-d6) d ppm: 32.66, 46.48, 126.26, 1226.83,

128.29, 128.55, 129.25, 129.64, 138.72, 142.43, 195.33. MS: m/z = 275. m.p.: 93–

94�C.

2,4-Dichloro-N-phenethyl-thiobenzamide (29)

1H-NMR (400 MHZ): (CDCl3) d ppm: 3.06(t, 2H), 3.91(t, 2H), 4.40(s, 1H), 6.92–

7.54 (m, 8H) 13C-NMR: (CDCl3) d ppm: 33.61, 47.24, 127.37, 128.74, 128.89,

129.05, 129.23, 129.63, 131.10, 135.70, 137.85, 140.30, 196.03. MS: m/z = 309.

m.p.: 121–122�C.

3,4–Dichloro-N-phenethyl-thiobenzamide (30)

1H-NMR (400 MHZ): (CDCl3) d ppm: 3.70 (t, 2H), 4.04 (t, 2H), 4.17 (s, 1H), 7.13–

7.75 (m, 8H). 13C-NMR: (CDCl3) d ppm: 33.68, 47.56, 125.56, 127.06, 128.63,

128.74, 128.99, 130.39, 132.82, 135.36, 137.99, 141.33, 196.21. MS: m/z = 309.

m.p.: 118–119�C.
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2-Biphenyl-4-yl-N-phenethyl-thioacetamide (32)

1H-NMR (400 MHZ): (CDCl3) d ppm: 2.01 (t, 2H), 2.88 (t, 2H), 3.91 (s, 2H), 4.05

(s, 1H), 6.97–7.54 (m, 14H) 13C-NMR: (CDCl3) d ppm: 32.89, 46.13, 52.10,

125.99, 126.31, 126.91, 127.19, 127.87, 128.09, 128.22, 129.33, 132.70, 137.17,

139.65, 140.04, 201.12. MS: m/z = 331. m.p.:148–149�C.

Pharmacological evaluation

The production of human recombinant MGL and pharmacological assay were

previously reported. (Labar et al., 2007). Briefly, [3H]-2-oleoylglycerol (10 lM, 50

000 dpm, American Radiolabeled Chemicals) and human MGL (5 ng in Tris buffer,

pH 8.0; 200 lL total volume assay) were incubated at 37�C for 10 min in the

presence of inhibitors or dimethyl sulfoxide (DMSO) (10 ll, vehicle). The

incubation was stopped by adding an ice-cold methanol–chloroform mixture (1:1,

400 lL), and the radioactivity in the upper aqueous phase was measured by liquid

scintillation. Results are reported as pI50 value (pI50 = –log IC50). Graph Pad prism

was used to treat the data.

For human FAAH evaluation (Labar et al., 2008), radiolabeled [3H]-anandamide

was incubated for 10 min at 37�C in the presence of inhibitors or DMSO (10 ll,

vehicle). The incubation was stopped by adding an ice-cold methanol–chloroform

mixture (1:1, 400 lL), and the radioactivity in the upper aqueous phase was

measured by liquid scintillation. Results are reported as pI50 value (pI50 = –log

IC50). Graph Pad prism was used to treat data.
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