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ABSTRACT

Purpose: The purpose of this study was to use dynamic

contrast enhanced magnetic resonance imaging (DCE-MRI)

to measure changes in tumor xenograft permeability

produced by the antitumor thioredoxin-1 (Trx-1) inhibitor

1-methylpropyl 2-imidazolyl disulfide (PX-12) and to assess

the relationship to Trx-1 and vascular endothelial growth

factor (VEGF) levels.

Experimental Design: DCE-MRI was used to monitor

the dynamics of gadolinium-diethylenetriaminepentaacetic

acid coupled bovine serum albumin as a macromolecular

contrast reagent to measure hemodynamic changes in HT-29

human colon xenografts in immunodeficient mice treated

with PX-12. Blood vessel permeability was estimated from the

slope of the enhancement curves, and tumor vascular volume

fraction from the ordinate. Tumor Trx-1 and VEGF was also

measured.

Results: PX-12 caused a rapid 63% decrease in the

average tumor blood vessel permeability within 2 hours of

administration. The decrease lasted 24 hours and had

returned to pretreatment values by 48 hours. The changes

in vascular permeability were not accompanied by alterations

in average tumor vascular volume fraction. There was a

decrease in tumor and tumor-derived VEGF in plasma at 24

hours after treatment with PX-12, but not at earlier time

points. However, tumor redox active Trx-1 showed a rapid

decline within 2 hours following PX-12 administration that

was maintained for 24 hours.

Conclusion: The rapid decrease in tumor vascular

permeability caused by PX-12 administration coincided with

a decrease in tumor redox active Trx-1 and preceded a

decrease in VEGF. DCE-MRI responses to PX-12 in patients

of Trx-1 inhibition at early time points and decreased VEGF

at later times, may be useful to follow tumor response and

even therapeutic benefit.

INTRODUCTION

Dynamic contrast enhanced magnetic resonance imaging

(DCE-MRI) can be used to characterize the functional

vasculature, providing information about microvessel blood

flow, blood volume, and vessel permeability (1, 2). Signal

intensity changes within a tumor measured by DCE-MRI

employing low molecular weight gadolinium (Gd) compounds

that distribute rapidly in the extracellular space have been used

to measure tumor vascular permeability and angiogenic

properties (3–6). Correlations of DCE-MRI parameters to

therapeutic and clinical end points such as histopathologic

outcome and patient survival have been reported (7–12). DCE-

MRI techniques that use large molecular weight agents designed

for prolonged intravascular retention (macromolecular contrast

media, MMCM, or blood pool agents) have also been developed

(13, 14) and will soon be available for clinical use. MMCM with

molecular sizes that approximate some serum proteins experi-

ence minimal extraction in normal vessels and are well-suited

for the measurement of tumor hyperpermeability (15–19).

Most studies using DCE-MRI have focused upon measur-

ing the effects of vascular endothelial growth factor (VEGF, also

known as vascular permeability factor), a cytokine produced by

many tumors that stimulates the formation of new blood vessels

from the existing vasculature (angiogenesis; ref. 20). Angio-

genesis is critical for the growth of solid tumors (21) and

increased VEGF expression has been shown to lead to increased

tumor angiogenesis, tumor progression, and metastasis (22–24).

VEGF expression may also be a predictive factor for decreased

patient survival (25). It has been suggested that DCE-MRI can

be used as an early biomarker to monitor the response to therapy

with anti-VEGF agents and other inhibitors of angiogenesis

(6, 26, 27). However, several other factors, could contribute to

the high vascularity of tumors including bradykinin (28), tumor

necrosis factor-a (29), and interleukin-2 (30). Nitric oxide (NO)

produced by endothelial NO synthase (NOS) also plays an

important role in mediating the angiogenic and vascular

permeability effects of VEGF (31).

Thioredoxin-1 (Trx-1) is a ubiquitously expressed small

redox protein with a conserved catalytic site that undergoes
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reversible NADPH-dependent reduction by selenocysteine-

containing flavoprotein Trx-1 reductases (32). Trx-1 has

multiple effects in the cell that includes the regulation of the

DNA binding and trans-activating activity of redox-sensitive

transcription factors such as the glucocorticoid receptor (33),

NF-nB (34), p53 (35), hypoxia-inducible transcription factor-1

(HIF-1; 36) and, indirectly through redox factor 1 (Ref-1/

HAP1), AP-1 (Fos/Jun heterodimer; ref. 37). Trx-1 binds in a

redox-dependent manner to enzymes to regulate their activity

including apoptosis signal-regulated kinase-1 (ASK-1; ref. 38),

protein kinases Ca, y, e, and ~ (39), and the tumor suppresser

phosphatase and tensin homologue deleted on chromosome 10

(PTEN; 40). Trx-1 also provides reducing equivalents to

cytoplasmic thioredoxin peroxidases that protect cells against

oxidant-induced apoptosis by scavenging H2O2 and organic

hydroperoxides (41).

Trx-1 expression is increased in several human cancers,

including lung, colon, cervix, liver, pancreatic, colorectal, and

squamous cell cancer (32, 42–46). Clinically, increased Trx-1

levels have been linked to aggressive tumor growth, inhibition

of apoptosis and decreased patient survival (42 – 46).

1-Methylpropyl 2-imidazolyl disulfide (PX-12) is an inhibitor

of Trx-1 that irreversibly thioalkylates a critical cysteine residue

(Cys73) that lies outside the conserved redox catalytic site of

Trx-1 (47). PX-12 is active as a Trx-1 inhibitor at submicro-

molar concentrations and has been shown to have in vivo

antitumor activity against human tumor xenografts including

HT-29 colon cancer in severe combined immunodeficient mice

(47). PX-12 has recently been tested in a phase I trial in patients

with advanced malignancies (48) where it has been shown to

decrease plasma Trx-1 and VEGF levels in some patients (49).

The formation of VEGF is regulated in part by the HIF-1

through a HIF-1 binding site in the promoter region of the

VEGF gene (50). HIF-1 is a heterodimer of an oxygen-degraded

HIF-1a subunit and a stable HIF-1h subunit (51). Trx-1

overexpression increases HIF-1a protein levels under both

normoxic and hypoxic conditions and increases HIF-1 trans-

activating activity and VEGF production by tumors (36). PX-12

has been shown to cause significant decreases in the expression

of HIF-1a and VEGF, and microvessel density in xenograft

tumors (52). It was, therefore, of interest for us to study changes

in tumor hemodynamic properties caused by PX-12 using DCE-

MRI with the MMCM, Gd-DTPA coupled to albumin Gd-

bovine serum albumin (BSA), and to investigate the relationship

of the DCE-MRI changes to Trx-1 and VEGF levels. We report

that PX-12 causes a rapid and sustained decrease in tumor

vascular permeability that correlates with a decrease in tumor

Trx-1 activity, but that tumor VEGF levels did not decrease until

several hours later.

MATERIALS AND METHODS

Cell Line and Tumor Implantation. HT-29, a tumori-

genic, nonmetastatic colon carcinoma cell line was obtained

from the American Tissue Type Collection (Rockville, MD).

Cells were passaged twice weekly with a 1:2 split and cultured

in DMEM supplemented with 10% fetal bovine serum

(HyClone, Ft. Collins, CO). For inoculation, approximately

106 cells in 0.1 mL of media were injected s.c. into the right

flank of female severe combined immunodeficient mice of ages

5 to 6 weeks (obtained from the Arizona Cancer Center

Experimental Mouse Shared Service). Mice developed palpable

tumors within a week of inoculation. Tumors were allowed to

grow to 100 to 500 mm3 prior to imaging. All animal protocols

were approved by the University of Arizona Institutional Animal

Care and Use Committee (IACUC).

Treatment. PX-12 was provided by Prolx Pharmaceut-

icals (Tucson, AZ). Mice were treated with either vehicle

(7% polyethylene glycol 400 in 0.013 N HCl) or with 25 mg/kg

PX-12 (2.5 mg/mL in vehicle) i.v. and were studied 2, 12, 24, or

48 hours later. For imaging, mice (three control and three treated

for each time point) were anesthetized using 1.0% to 2.0%

isoflurane carried in oxygen. Body temperature was maintained

at 37jC with a circulating water blanket and was monitored

using a rectal fluoroptic thermometer (Luxtron, Santa Clara,

CA). The contrast agent Gd-BSA, 0.6 mg/g in 0.15 mL saline,

was injected via a tail vein catheter comprising a 30-gauge

needle connected to PE-20 polyethylene tubing. The Gd-BSA

was synthesized by the Arizona Cancer Center Synthetic

Chemistry Core.

DCE-MRI Data Acquisition. All imaging was done on a

4.7 T horizontal bore MR imager (Bruker, Billerica, MA;

ref. 53). Mice were positioned into a 24 mm ID Litzcage coil

(Doty Scientific, Columbia, SC). Sagittal scout images were

obtained to determine the position of the tumors. Contiguous

axial 2.0 mm slices covering the entire tumor, as well as one

slice through the kidneys, were imaged by the following

protocol; a proton-density-weighed (TR = 8 seconds, TE = 5.9

milliseconds, NA = 2, FOV = 4 � 4 cm) and a T1 weighed spin-

echo image (TR = 300 milliseconds, TE = 5.9 milliseconds,

NA = 8, FOV = 4 � 4 cm) collected prior to injection of contrast

agent. A dynamic series of spin-echo images (TR = 300

milliseconds, TE = 5.9 milliseconds, NA = 4, FOV = 4 � 4 cm,

NR = 19) were collected over 45 minutes, with the contrast

agent solution being injected during repetitions two to five.

DCE-MRI Data Analysis. Figure 1 gives the basis for

DCE-MRI signal enhancement with MMCM. Extravasation of

the Gd-BSA was assumed to be described by a permeability-

limited two-compartment model with unidirectional transport of

contrast agent on the time scale of the study. Signal

enhancement in the DCE-MRI data was converted to Gd-BSA

concentration using the relaxivity measured in vitro at 37jC
(1.08 L/g/s) assuming a linear relationship between Gd

concentration and relaxation rate enhancement. The Gd-BSA

versus time data was fitted to a straight line for each pixel, to

obtain a slope (related to vascular permeability) and y-axis

intercept (related to the vascular volume; ref. 53).

The slope of enhancement in the vena cava was calculated

and normalized for Gd dose using the slope determined in the

tumor for each mouse. The vena cava was identified using a

hand-drawn region of interest of approximately 5 to 10 pixels.

The vascular volume parameter measured in the tumor was

divided by the value obtained in the muscle and multiplied by

5% (the approximate vascular volume fraction of the muscle) to

obtain the vascular volume fraction of the tumor. Permeability

and vascular volume fraction maps were generated. Data

analysis was done using programs written in Interactive Data

Language (Research Systems, Boulder, CO).
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VEGF and Trx-1 Measurements. HT-29 xenograft

tumors were grown to approximately 400 mm3 as described

above. Mice were treated with 25 mg/kg PX-12 and sacrificed

at various times. Blood was collected into EDTA tubes and

tumors removed and immediately snap-frozen and stored in

liquid nitrogen. For assay, the tumors were homogenized using

a PowerGen 125 homogenizer (Fisher Scientific, Pittsburgh,

Pennsylvania) in 10 mmol Tris-HCl buffer (pH 7.4), 100

mmol NaCl. The suspension was centrifuged twice at

8,000 � g at 4jC for 15 minutes and protein in the

supernatant measured using Coomassie protein assay reagent

(Pierce Biotechnology, Rockford, IL). Tumor total Trx-1 was

measured by Western blotting using a mouse anti-human Trx-

1 monoclonal antibody (5A3G5) that does not distinguish

between free and PX-12-bound Trx-1 (46). Detection was with

donkey anti-rabbit IgG peroxidase coupled secondary antibody

and the Renaissance chemiluminescence system on Kodak

X-Omat Blue XB films (Eastman Kodak, New Haven, CT).

Bands were quantified using Eagle Eye software (Stratagene

Corp., La Jolla, CA). Actin was used as a loading control.

Tumor redox active Trx-1 was measured spectrophotometri-

cally as the rate of oxidation of NADPH at 339 nm by human

placental thioredoxin reductase, as previously described (54).

Results are expressed as micrograms of Trx-1 per milligram of

cellular protein calculated from the rate of reduction of

recombinant human Trx-1 in the same assay. Tumor VEGF

levels were measured in plasma and tumor lysates using

human VEGF and mouse VEGF ELISA kits (R&D Systems,

Minneapolis, MN) according to the manufacturer’s instructions.

RESULTS

DCE-MRI Response. Parameter maps of vascular

permeability and vascular volume fraction were created to

visualize tumor hemodynamic parameters. Figure 2A is a

typical series of permeability maps 2 hours after vehicle or

PX-12, 25 mg/kg, administration showing there are areas of

high and low permeability within a tumor. Heterogeneities in

the distribution of tumor hemodynamic parameters have

previously been reported in experimental as well as in human

tumors (55, 56). PX-12 treatment caused a rapid decrease

within 2 hours in permeability in all areas of the tumor. At the

same time, there was no change in muscle or kidney vascular

permeability which was always much lower than in the tumor.

PX-12 administration had no effect upon the average tumor

vascular volume fraction (Fig. 2B).

Histogram analyses of the data loses the spatial information

yet retains the distribution of values for quantitative analyses.

Figure 3 shows histogram data summed for all animals in each

group. Control tumors (open columns) were characterized by

heterogeneous and broad distributions of permeability values, and

this was invariant between time points. In contrast, PX-12-treated

tumors showed homogeneous and narrow histograms centered

around much lower values. The distribution of permeability

values returned to control levels within 48 hours.

When averaged across all tumors there was as a rapid

decrease, within 2 hours of PX-12 administration, in tumor blood

vessel permeability compared with control or vehicle-treated

tumors with a mean decrease (FSD) of 63.4 F 11.3% (P < 0.01;

Fig. 4A). The decrease in tumor blood vessel permeability was

still present 12 hours after PX-12 administration with a mean

decrease of 59.2 F 11.2% (P < 0.01), but progressively lessened

at the later time points, with a mean decrease of 51.6 F 7.2%

(P < 0.05) at 24 hours and had returned to control values at 48

hours (103.4 F 17.6%, not significant). The vascular volume

fraction of the tumor was not significantly modified at any time

point (Fig. 4B).

VEGF and Trx-1. The effect of PX-12 administration

upon tumor Trx-1 is shown in Fig. 5. There was no change in

total Trx-1 protein in the tumor except a small nonsignificant

decrease of 29% at 48 hours following treatment with PX-12 at

25 mg/kg i.v. However, there was a marked and rapid decrease in

tumor redox active Trx-1 within 2 hours of PX-12 administra-

tion, to 18.2 F 6.5% of control values, that was still 60.1 F
12.5% of control values at 48 hours (P < 0.01 in both cases).

There was a decrease in tumor human VEGF by 24 hours after

PX-12 administration with below detectable levels (1 pg per

microgram of protein), but not at the earlier time points of 2 and

12 hours (Fig. 6). Low levels of mouse VEGF in the tumor,

presumably derived from mouse blood, stromal tissue, and

endothelial cells, did not show a significant change at any time

point. Mouse VEGF in plasma exhibited a decrease to 49.9 F
12.5% of pretreatment values at 24 hours (P < 0.05) but was not

significantly changed at the other time points. Human VEGF

could not be detected in mouse plasma.

Fig. 1 DCE-MRI enhance-
ment with MMCM. Individual
imaging voxels (boxes A-E )
containing a blood vessel with
arterial (red) to venous (blue)
flow. In areas with vascular
imperfections leading to leaki-
ness (spots ), the MMCM
extravasates into the interstitial
space. The corresponding
enhancement curves are shown
below each voxe l . The
Y-intercept is an estimate of
the vascular volume and the
slope is an estimate of the
permeability.
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DISCUSSION

PX-12 is an investigational cancer drug that inhibits Trx-1

and Trx-1 redox signaling (47). PX-12 has also been shown to

decrease HIF-1a protein levels as well as the expression of HIF-

1 downstream target genes such as VEGF, and to decrease

microvessel density in different tumor models including HT-29

human colon carcinoma xenografts (52). In a phase I study in

patients with advanced malignancies, PX-12 showed inhibition

of tumor growth and decreased plasma Trx-1 and VEGF levels

in some patients (49).

Macromolecular DCE-MRI can be used to follow changes

in tumor vascular permeability and vascular volume fraction

induced by antiangiogenic therapies (57). In a clinical study

using DCE-MRI to monitor the antivascular effects of anti-

VEGF antibody treatment large reductions in tumor vascular

permeability were seen within 24 hours of a 3-day treatment that

were not accompanied by a change in fractional plasma volume

(58). Both intermediate and large molecular contrast agents can

be used to monitor tumor response to VEGF antibodies in

experimental tumors where significant reductions in tumor

vascular permeability as well as in fractional plasma volume

were observed (19). In the present study, DCE-MRI with Gd-

BSA as the MMCM was used to assess hemodynamic changes

in HT-29 tumor xenografts after treatment with PX-12. The

results showed a significant decrease in tumor vascular

permeability, within 2 hours of PX-12 administration, which

persisted for 24 hours with a return to pretreatment values by 48

hours. The vascular volume fraction was not affected by PX-12

at any time point.

The very rapid decrease in tumor vascular permeability

following PX-12 administration is unlikely to have been caused

by a decrease in VEGF synthesis. Tumor HIF-1a, whose

breakdown in posttranslationally regulated, shows a decrease

4 hours following PX-12 administration (52). Although VEGF

mRNA and protein have half lives of around 30 minutes (59, 60)

and can show relatively rapid changes, we found that tumor

VEGF-A levels did not decrease significantly until 24 hours after

PX-12 treatment. A caveat is that the ELISA assay recognizes

Fig. 2 Vascular permeability and vascular
volume fraction maps of tumors treated with
PX-12. A, vascular permeability maps 2 hours
after vehicle (control) or treatment with PX-12
(25 mg/kg). Each image is an axial slice of the
mouse with the tumor area encircled (arrow).
There was a substantial reduction in tumor
vascular permeability in PX-12-treated tumors
compared with vehicle-treated tumors. B,
vascular volume fraction maps 2 hours after
vehicle (control ) or PX-12 administration.
There is no change in the average vascular
volume fraction after treatment is seen.
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VEGF-A 121, 165, and 206 splice isoforms but not 145 and 189

isoforms, and it is possible that other forms of VEGF could be

responsible for the hemodynamic changes. There was however,

no change in VEGF-A or VEGF-C gene expression 2 hours after

PX-12 treatment (not shown). PX-12 could be inhibiting the

production of other vascular permeability factors. We have

previously reported that PX-12 inhibits the expression of

inducible NOS in cultured cells (52). NO formed by inducible

NOS increases vascular permeability (61). However, it seems

unlikely that a decrease in inducible NOS expression could occur

with the rapid time course seen for the decreased tumor vascular

permeability following PX-12 administration. NO synthases

contain vicinal cysteine residues that in the presence of NO

undergo S-nitrosylation and disulfide formation resulting in

inhibition of catalytic activity. Trx-1 has been shown to restore

the catalytic activity of NO-exposed NO synthase as purified

enzyme and in pulmonary artery endothelial cells (62). It is

possible therefore, that by inhibiting the redox activity of Trx-1,

PX-12 causes decreased NO synthase activity and decreased NO

formation. Alternatively, PX-12 might directly inhibit NO

synthase by promoting vicinal cysteine disulfide formation.

Although we saw no correlation between the decrease in

tumor vascular permeability caused by PX-12 and a decrease in

VEGF levels at early time points, we did see a rapid decrease

in tumor Trx-1 redox activity by PX-12. Trx-1 which has not

previously been reported to affect vascular permeability is a

secreted protein (63) and can enhance the growth-stimulating

effects of cytokines such as interleukin-2 in cancer cells (64).

Interleukin-2 increases the permeability of vascular endothelium

Fig. 3 Summed histograms of the hemodynamic changes caused by
PX-12. Open columns, vehicle control tumors; filled bars, PX-12-treated
tumors. Values are the mean of three mice.

Fig. 4 Time course of tumor hemodynamic changes caused by PX-12.
Mice received vehicle alone or PX-12 (25 mg/kg). A, vascular
permeability estimated from the slope of the enhancement curves; B,
vascular volume fraction was estimated from the ordinate. (E) Vehicle
control and (5) PX-12-treated tumors in both cases. There were three
mice in each group. Bars, SD; *, P < 0.05; **, P < 0.01.
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(65, 66) so that PX-12 might be inhibiting an action of Trx-1

on interleukin 2 that in turn leads to decreased vascular

permeability.

Another explanation for the decrease in vascular permeabil-

ity by PX-12 is that it has a direct effect on the vascular

endothelium perhaps inhibiting the VEGF receptor or VEGF

receptor signaling. If so, this is likely to be a relatively specific

effect because N-ethylmaleimide, a nonspecific thiol inhibitor,

increases vascular permeability when given to rats (67). Although

the acute effects of PX-12 on tumor vascular permeability do not

seem to be mediated by an effect on VEGF levels, we cannot rule

out the possibility that the longer term effects of PX-12 may be

related to a decrease in tumor VEGF formation.

We found that PX-12 produced no reduction in tumor

vascular volume fraction. Other investigators have also observed

this pattern of response following administration of antiangio-

genic treatments, such as PTK787/KZ222854 an inhibitor of the

VEGF-receptor 1 (VEGF-R1, FLT-1) and VEGF receptor-2

(KDR) tyrosine kinases in an experimental breast cancer model

(68). However, the lack of change in fractional plasma volume is

not a function of the tumor model, because SU6668 a inhibitor

of VEGF receptor-2, fibroblast growth factor receptor-1 and

platelet-derived growth factor receptor h tyrosine kinases, in this

same system caused a decrease in DCE-MRI measured vessel

permeability as well as in fractional plasma volume by 24 hours

posttreatment (69).

Although several DCE-MRI studies have shown a

decrease in tumor vascular permeability by antiangiogenic

therapies, they have generally measured changes 24 hours or

more after drug administration (26, 27). However, there are

studies that report rapid decreases in tumor vascular

permeability within 3 hours of administration of the tumor

necrosis factor-a activator 5,6-dimethylxanthenone-4-acetic

acid (70), within 4 to 6 hours for the vascular targeting

agent combrestatin phosphate A-4 (71), and 6 hours for

ZD6126, also a vascular targeting agent (72). However, none

of these agents requires altered protein synthesis for their

activity. The relevance of DCE-MRI changes, whether short or

long-term, to clinical response has yet to be established.

Nonetheless, DCE-MRI time course studies in experimental

models may be helpful in the design of clinical trials and

imaging end points. From this study, we can speculate that

DCE-MRI studies of tumor hemodynamics in PX-12-treated

patients will be of particular interest in the clinic.

In summary, we have shown using DCE-MRI and the

MMCR Gd-BSA in mice that the Trx-1 inhibitor PX-12 causes

a rapid decrease in HT-29 colon tumor xenograft blood vessel

permeability within 2 hours of administration. The decrease

lasted 24 hours and had returned to pretreatment values by 48

hours. The changes in vascular permeability were not

accompanied by alterations in average tumor vascular volume

fraction. There was no change in tumor or plasma VEGF at

the early time points after PX-12 treatment but there was a

rapid decrease in tumor Trx-1 that was maintained for 24

hours. Thus, the decreased tumor permeability at earlier time

points may be due to a decrease in Trx-1 although a

contribution of decreased VEGF at later time points cannot

be ruled out.

Fig. 5 Effect of PX-12 on tumor Trx-1. Mice were treated with PX-
12 (25 mg/kg i.v.) and (A) total Trx-1 protein and (B) redox active
Trx-1 in the tumors measured. Values are the mean of four mice;
bars, SD. **, P < 0.01.

Fig. 6 Effect of PX-12 on VEGF levels in HT-29 tumor xenografts
and plasma. Mice were treated with PX-12 (25 mg/kg). (.) Mouse
VEGF in plasma (pg/AL); (o) mouse VEGF in the tumor (pg/mg);
and (!) human VEGF in the tumor (pg/mg). Points, mean of four
mice; bars, SD; **, P < 0.01.
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