ACTIVATED MACROPHAGES AS A NOVEL DETERMINANT OF TUMOR CELL RADIORESPONSE: THE ROLE OF NITRIC OXIDE–MEDIATED INHIBITION OF CELLULAR RESPIRATION AND OXYGEN SPARING

HENG JIANG, M.S.,* MARK DE RIDDER, M.D., PH.D.,*† VALERI N. VEROVSKI, PH.D.,†
PIERRE SONVEAUX, PH.D.,† BENEQUIT F. JORDAN, PH.D.,‡ KALUN LAW, B.S.,*
CHRISTINNE MONSAERT, B.S.,* DIRK L. VAN DEN BERGE, M.D.,† DIRK VERELLEN, PH.D.,†
OLIVIER FERON, PH.D.,† BERNARD GALLEZ, PH.D.,‡ AND GUY A. STORME, M.D., PH.D.***

*Vrije Universiteit Brussel, Cancer Research Unit, †UZ Brussel, Oncologisch Centrum, Radiotherapie, ‡Unit of Pharmacology and Therapeutics and Unit of Biomedical Magnetic Resonance, Université catholique de Louvain, Brussels, Belgium

Purpose: Nitric oxide (NO), synthesized by the inducible nitric oxide synthase (iNOS), is known to inhibit metabolic oxygen consumption because of interference with mitochondrial respiratory activity. This study examined whether activation of iNOS (a) directly in tumor cells or (b) in bystander macrophages may improve radioresponse through sparing of oxygen.

Methods and Materials: EMT-6 tumor cells and RAW 264.7 macrophages were exposed to bacterial lipopolysaccharide plus interferon-γ, and examined for iNOS expression by reverse transcription polymerase chain reaction, Western blotting and enzymatic activity. Tumor cells alone, or combined with macrophages were subjected to metabolic hypoxia and analyzed for radiosensitivity by clonogenic assay, and for oxygen consumption by electron paramagnetic resonance and a Clark-type electrode.

Results: Both tumor cells and macrophages displayed a coherent picture of iNOS induction at transcriptional/translational levels and NO/nitrite production, whereas macrophages showed also co-induction of the inducible heme oxygenase-1, which is associated with carbon monoxide (CO) and bilirubin production. Activation of iNOS in tumor cells resulted in a profound oxygen sparing and a 2.3-fold radiosensitization. Bystander NO-producing, but not CO-producing, macrophages were able to block oxygen consumption by 1.9-fold and to radiosensitize tumor cells by 2.2-fold. Both effects could be neutralized by aminoguanidine, a metabolic iNOS inhibitor. An improved radioresponse was clearly observed at macrophages to tumor cells ratios ranging between 1:16 to 1:1.

Conclusions: Our study is the first, as far as we are aware, to provide evidence that iNOS may induce radiosensitization through oxygen sparing, and illuminates NO-producing macrophages as a novel determinant of tumor cell radioresponse within the hypoxic tumor microenvironment. © 2010 Elsevier Inc.

Macrophages, Hypoxia, Oxygen sparing, Radiosensitization, Inducible nitric oxide synthase.

INTRODUCTION

Hypoxia is a common feature of solid tumors, which have median oxygen levels around 1% and frequent regions of deep hypoxia (0.1–1%), contrasting to well-oxygenated normal tissues (1). The lack of oxygen prevents irradiation-induced DNA damage, which may account for up to three times less radiosensitivity compared with aerobic cells. Clearly, this impaired tumor radioresponse reflects the imbalance between oxygen supply and metabolic oxygen depletion (MOD). Computer simulations linked to experimentally derived data predicted that pharmacologically forced inhibition of MOD may be significantly more efficient to abolish tumor hypoxia, as compared with increased blood perfusion (2). In line, some glucocorticoids, known to inhibit oxidative phosphorylation in the mitochondrial respiratory chain, enhanced oxygenation and radiosensitivity in a mouse tumor model despite decreased tumor perfusion (3).

In this context, we have focused efforts to revisit MOD with special regard to nitric oxide (NO), which is synthesized from L-arginine by a family of nitric oxide synthases (NOS) and is involved in neurotransmission, vasodilation, immunoreactivity, and mitochondrial oxygen homeostasis (4, 5). Our
Our principle model of hypoxia-induced radiosensitivity was based on a MOD at 10^5/mL to match the conditions of EPR.
In EMT-6 tumor cells, the iNOS profile generally matched to the activity of HO-1 only and did not induce iNOS (data not shown). (Fig. 1D). The latter agent, as expected, was a specific activator of HO-1.

The expression of iNOS and HO-1 was examined by RT-PCR, Western blotting, and enzymatic assays. In both tumor cells and macrophages, the iNOS RNA levels were upregulated at a ratio of 1:32–1:2) was performed in micropellets, an alternative model of metabolic hypoxia described in more detail previously (12–14). Briefly, 100-µL aliquots of 5 × 10^6/mL EMT-6 cells plus 0.5 × 10^6/mL preirradiated RAW 264.7 macrophages were placed in conical tubes and centrifuged for 5 min at 300g to produce the pellets. MOD was induced before radiation by a 5-min incubation at 37°C. Tumor cell survival after radiation (5, 10, and 15 Gy) was measured by an 8-day colony formation assay. A surviving fraction was calculated as a colony survival after radiation versus no radiation (0 Gy). Radiosensitization (enhancement ratio) was determined at a surviving fraction of 0.1. The plating efficiency of EMT-6 cells was 80–85% and was not affected by exposure to aminoguanidine during MOD induction.

Statistics
All assays were repeated at least three times. Data are expressed as mean with corresponding standard deviation. Western blots were taken from representative experiments.

RESULTS
Response of RAW 264.7 macrophages and EMT-6 tumor cells to LPS/IFN-γ
Both RAW 264.7 macrophages and EMT-6 tumor cells were exposed to a similar stimulation with LPS/IFN-γ, and the expression of iNOS and HO-1 was examined by RT-PCR, Western blotting, and enzymatic assays. In both tumor cells and macrophages, the iNOS RNA levels were upregulated until the ΔC_T values of 8–9 (versus 18S), consistent with a positive protein immunostaining (Fig. 1A and B). In addition, macrophages showed the activation of HO-1, which was confirmed for the alternative stimulation with hemin (Fig. 1D). The latter agent, as expected, was a specific activator of HO-1 only and did not induce iNOS (data not shown). In EMT-6 tumor cells, the iNOS profile generally matched that of macrophages, whereas HO-1 was negative in both RT-PCR (ΔC_T > 11) and Western blotting (Fig. 1C). Next, the activity profiles of both enzymes were examined and normalized to the same cell concentration of 10 × 10^6/mL, as in radiation and oxygen consumption experiments. Enzymatic activity of iNOS was determined by the nitrite production, an oxidative product of NO, whereas HO-1 was analyzed by the production of bilirubin that is released (next to CO) during the oxidative reaction of heme degradation. Stimulated RAW 264.7 and EMT-6 cells produced similar levels of nitrite (14 µM), which was completely blocked by aminoguanidine, which was further used in radiosensitizing experiments to dissect the effects of iNOS from HO-1 (Fig. 2A).

The HO-1 activity ranged between 8 and 22 µM bilirubin, after stimulation with LPS/IFN-γ and hemin, respectively, and could be abolished by SnPPIX (Fig. 2B). This well-known HO-1 inhibitor, however, exerted considerable delayed toxicity and therefore was not used in radiation experiments. Instead, to dissect HO-1 from iNOS, we preferred to selectively induce HO-1 by hemin. To summarize in brief, LPS/IFN-γ induced a similar proinflammatory iNOS response in RAW 264.7 macrophages and EMT-6 tumor cells, whereas macrophages in addition featured conoiduction of HO-1.

Radiosensitization of EMT-6 tumor cells through iNOS: direct and bystander effects
The previous set of data shows that macrophages and tumor cells may produce similar amounts of NO/nitrite upon exposure to LPS/IFN-γ. Therefore, we asked whether NO synthesized directly in tumor cells, or released from bystander macrophages, is an equally potent radiosensitizer. Radiosensitizing effects were analyzed in sealed cell suspensions, which consisted of 10 × 10^6/mL EMT-6 tumor cells, a standard cell density used in our EPR oximetry (6). At this cell concentration, the appearance of hypoxic radioresistance was already clearly detected at 15 min, as compared with aerobic cells (Fig. 3A). First, the radiosensitivity of EMT-6 tumor cells after exposure to LPS/IFN-γ was evaluated in the absence of macrophages. This direct treatment restored hypoxic radiresponse of tumor cells with an enhancement ratio of 2.3, hence resembling the aerobic radiosensitivity. Next, RAW 264.7 macrophages were activated by LPS/IFN-γ and mixed with control EMT-6 cells at a ratio of 1:1 (Fig. 3B). Bystander macrophages increased the radioreponse of tumor cells by 2.2-fold, thus closely approaching the direct radiosensitizing effect. The metabolic iNOS inhibitor aminoguanidine abolished the radiosensitizing effect of LPS/IFN-γ in both sets, thus implying the role of iNOS-mediated NO synthesis in radiosensitization. On the other hand, the HO-1–expressing macrophages (obtained by exposure to hemin) failed to radiosensitize tumor cells (Fig. 3B), further arguing against the role of HO-1 in hypoxic radioreponse. Considering these negative results, only iNOS (but not HO-1) was further explored as a determinant of cellular oxygen consumption.

Inhibition of oxygen consumption through iNOS
To link oxygenation and radioreponse, the oxygen consumption measurements were performed by EPR oximetry in the frame of radiosensitizing experiments. In sealed cell suspensions under matching metabolic conditions (10 × 10^6/mL at 37°C), the mean slopes for control EMT-6 tumor cells and RAW 264.7 macrophages (basal rates) were −1.59 and −0.77, respectively, suggesting that tumor cells consume oxygen significantly faster (Fig. 4A). Next, three graphs (Fig. 4B and D) demonstrate the inhibitory effect of iNOS on respiration, and each pair of slopes shows the switch from NO production to NO block by aminoguanidine. Indeed, in NO-producing EMT-6 and RAW 264.7 cells...
apart), aminoguanidine restored the oxygen consumption rates from \(-0.64\) to \(-1.66\) and from \(-0.27\) to \(-0.65\), thus by 2.5 and 2.4-fold, respectively (Fig. 4B and C). Next, we verified whether NO-producing macrophages can inhibit oxygen consumption in mixed cell suspensions with control tumor cells at a ratio of 1:1 (Fig. 4D). Under aminoguanidine block, we observed a 1.9-fold increase in oxygen consumption (from 0.80 to \(-1.49\)), an effect that is most likely dependent on tumor cells because macrophages, activated or not, were consuming 2.1-fold less oxygen. This means that NO produced in activated macrophages may easily diffuse to adjacent tumor cells and thereby counteract oxygen consumption through a bystander effect. All the above EPR measurements are summarized in Fig. 4E, where data are expressed as paired slope
coefficients, and further confirmed by a Clark-type at higher cell densities of 30–50 × 10^6/mL (Fig. 4F). In control EMT-6 cells, oxygen was progressively consumed, leading to a deep hypoxia below 1% oxygen, whereas iNOS activation by LPS/IFN-γ resulted in a profound sparing of oxygen over 5%. Inasmuch as radiosensitizing experiments and oxygen measurements were performed in the same model of metabolic hypoxia, we conclude that iNOS induction, either directly in EMT-6 tumor cells or in bystander RAW 264.7 macrophages, is the crucial mechanism of oxygen sparing and overcoming hypoxic radioresistance. This mechanism can be abolished through the metabolic block of iNOS by aminoguanidine, which in parallel counteracts NO/nitrite production, oxygen sparing, and eventually radiosensitization.

Radiosensitizing potential of activated macrophages

To further clarify the radiosensitizing potential of bystander macrophages, we next examined the limits of macrophage-to-tumor cells ratios that are sufficient to radiosensitize tumor cells. Inasmuch as the local level of NO production should be proportional to a cell concentration, we have used another model of metabolic hypoxia, namely micropellets (cell density approximately 300 x 10^6/mL), which contained the fixed amount of EMT-6 tumor cells (0.5 x 10^6) and RAW 264.7 macrophages added at a ratio from 1:32 to 1:2. This model mimicked a diffusion-limited oxygenation leading to hypoxia-induced radioresistance, inasmuch as the surviving fraction of control EMT-6 cells, both alone or mixed with control macrophages, was between...
0.1-0.3 at 10 Gy (Fig. 5). Note that aerobic cell survival at this dose of radiation was below 0.01 (Fig. 3A). Activation of macrophages by LPS/IFN-γ resulted in an efficient radiosensitization of EMT-6 cells at ratios above 1:16. This bystander effect was comparable with direct activity found in iNOS-expressing EMT-6 cells alone, in line with experiments performed in sealed cell suspensions (Fig. 3A and B). Once again, HO-1–expressing macrophages, obtained

Fig. 4. Inhibition of oxygen consumption by inducible nitric oxide synthase (iNOS). EMT-6 and RAW 264.7 cells were treated with lipopolysaccharide (LPS) plus interferon (IFN)-γ (0.1 μg/mL plus 10 ng/mL) for 16 h. Oxygen levels were measured either by EPR oxymetry (A–E) or by a Clark-type electrode (F). (A) Basal oxygen consumption rates in control EMT-6 and RAW 264.7 cells. (B, C, and D) The switch of oxygen consumption by the iNOS inhibitor aminoguanidine (AG) in NO-producing EMT-6 (B), RAW 264.7 (C), and mixed (1:1) RAW 264.7/EMT-6 cells (D). In the last set (D), only RAW 264.7 cells were exposed to LPS/IFN-γ and AG, and mixed with control EMT-6 cells. (E) Summary of A–D, expressed as the slope coefficients, which were referred to the basal rate of oxygen consumption in control EMT-6 cells (interrupted line). (F) Induction of deep hypoxia (below 1% oxygen) in control EMT-6 cells, as opposed to oxygen sparing through iNOS induction. To inhibit iNOS, AG was used at 3 mM. Data are the mean of four repeats; the last set (F) is a representative measurement.
The principal finding of our study is that inhibition of cellular respiration through the iNOS/NO pathway may efficiently counteract MOD and hypoxia-induced radioresistance in tumor cells. This has been confirmed in both isolated tumor cells and in tumor cells combined with macrophages at different ratios, modeling the tumor microenvironment with regard to the proinflammatory infiltrate. Four conclusions can be drawn from oxygen consumption measurements performed either by EPR or a Clark-type oximetry. First, the induction of iNOS resulted in a 2- to 3-fold decline in the initial slopes of oxygen consumption in both EMT-6 tumor cells and RAW 264.7 macrophages. Tumor cells consumed up to 2.1 times more oxygen than macrophages, suggesting that they were primarily responsible for MOD in mixed cell suspensions. Second, aminoguanidine, a metabolic inhibitor of iNOS-mediated NO synthesis, reversed MOD in both types of cells and in mixed cell suspensions, thus providing a selective tool to affect MOD-dependent radioresistance. Third, the bystander effect of activated NO-producing macrophages closely approached the direct effect of NO endogenously produced inside tumor cells. This can be explained by the remarkable diffusion properties of NO, which is not metabolically consumed in contrast to oxygen. Finally, the induction of radiobiologically relevant hypoxia (below 1% oxygen) could be revealed in iNOS-silent tumor cells only, whereas iNOS activation efficiently reversed MOD with an oxygen-sparing effect above 5%. Collectively, these findings provide evidence that the iNOS and oxygen consumption profiles are inversely linked and that activation of macrophages may favor oxygen sparing in tumor cells. It remains to clarify whether NO effects are more pronounced in tumor cell types that reveal high respiratory rates.

Over the past decade, the multifaceted role of NO in cancer biology has been strongly emphasized (4, 10). It has been suggested that low basal levels of NO may be carcinogenic and angiogenic, thus promoting the growth of primary tumors and metastases. By contrast, optimal iNOS activation was shown to induce apoptosis and to exert antitumor and antimetastatic effects. Besides, at micromolar concentrations, both NO and its oxidative product nitrite are known to down-regulate respiratory mitochondrial functions, in a variety of cell types including tumor cells, macrophages, astrocytes, hepatocytes, and myocytes (5, 10, 22). The observed levels of NO/nitrite production in both EMT-6 tumor cells and RAW 264.7 macrophages after exposure to LPS/IFN-γ matched those concentrations. Indeed, we found up to 14 μM nitrite at used cell densities (10^6/mL), consistent with a high iNOS expression in Western blotting and RT-PCR. In activated macrophages (but not in EMT-6 cells), we also detected the upregulation of the inducible heme oxygenase-1 (HO-1), which is often co-induced in macrophages and seems to defend them from NO cytotoxicity by releasing the protective molecule CO (and bilirubin) from heme (20, 21). The radiosensitizing potential of bystander NO and CO-producing macrophages was further examined in two models of metabolic hypoxia in comparison with direct NO effects in iNOS-expressing tumor cells.

We observed a 2.4 times radioprotection of hypoxic iNOS-silent EMT-6 cells compared with aerobic counterparts, thus approaching a classic radioresistance in chronic hypoxia in a nitrogen-based atmosphere (15). In line with MOD inhibition, NO-producing tumor cells showed restored radiosensitivity, whereas iNOS inhibition by aminoguanidine abolished both respiratory and radiation effects. The same pattern of radiosensitizing effects could be induced by bystander NO-producing macrophages, whereas CO-producing macrophages failed to show any radiomodulation. We cannot rule out that our acute metabolic model is not optimal to uncover the effect of CO on mitochondrial respiration, recently described by D’Amico et al. (21). Indeed, CO was shown to exclusively target the reduced form of cytochrome c oxidase obtained by a prolonged cell pre-incubation in 1% oxygen. By contrast, CO could interact with both reduced and oxidized enzymes, and it profoundly blocked cellular respiration. Our data were consistent with the last observation and projected the importance of NO to control both respiration and radiosensitivity in tumor cells. In summary, our studies now suggest four possible mechanisms by which NO may improve tumor cell radiosensitivity: (1) enhanced DNA damage by analogy to the direct fixation effects of oxygen (16, 17); (2) increased oxygenation through eNOS-mediated...
vasodilation or oxygen sparing (6, 7); (3) direct MOD block in iNOS-expressing tumor cells; and (4) indirect MOD block by NO-producing macrophages through a bystander effect.

It is well accepted that classic M1 polarization of macrophages is an important prerequisite for Th1 polarization in adaptive T-cell immunity driven by IL-12 and IFN-γ and that tumor hypoxia may inhibit this polarization (18, 19, 23). We have previously documented both IL-12 and IFN-γ as potent radiosensitizers (14) and have demonstrated the radiosensitizing ability of activated CD8+ T cells through the secretion of IFN-γ (15). Those effects, however, could be revealed in iNOS-expressing tumor cells only, because radiosensitization was caused by NO produced inside tumor cells. The current study represents the next step in our radiosensitizing strategy, designed to engage iNOS-silent tumor cells as well. Our data now provide evidence that activated macrophages are able to counteract MOD and hypoxic radiosensitivity in tumor cells through a bystander effect of NO. In a physiologic model of metabolic hypoxia, clear radiosensitizing effects could be achieved at ratios ranging between 1:16 to 1:1, which are relevant for the majority of solid tumors.

CONCLUSION

Collectively, our findings illuminate NO-producing macrophages as a novel determinant of tumor cell radiosensitivity. In addition, tumor-associated macrophages, an important focus in tumor immunology and an attractive target in immunostimulatory strategies, may become a mechanistic link between immunotherapy and radiotherapy.

REFERENCES