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a b s t r a c t

Tetrathiatriarylmethyl radicals are attractive spin probes extensively used in biomedical magnetic reso-
nance applications. We report a straightforward synthesis of two original tetrathiatriarylmethyl radicals
incorporating, respectively, 15 and 45 fluorine atoms, and thus possessing a high affinity to fluorous
media. F15T-03 and F45T-03 exhibit a single sharp EPR spectrum and their EPR line broadening is highly
sensitive to molecular oxygen. These spin probes are specially designed for assessment of tumor oxygen-
ation using perfluorocarbon formulations.

� 2008 Elsevier Ltd. All rights reserved.

Molecular oxygen plays one of the most important roles in the
metabolism of living organisms. Abnormal tissue oxygenation is
closely linked to number of diseases (e.g., cancer, stroke, ischemic
diseases).1 Therefore, it is of particular importance for pO2 in vitro
and in vivo assessments to rely upon accurate methods. The tech-
niques for measuring oxygen partial pressure in biological media
include both non magnetic and magnetic resonance (MR) based
methods. Typically polarographic oxygen electrodes, fluorescence
quenching, phosphorescence quenching, near infra-red spectros-
copy (NIRS) or the use of bioreductive markers such as 2-nitroim-
idazole derivatives belong to the former series of methods, while
19F NMR spectroscopy/imaging, blood oxygen level dependent
(BOLD) imaging, or electron paramagnetic resonance (EPR) and Dy-
namic nuclear polarization (DNP) using oxygen sensitive spin
probes belong to the latter.2 EPR methods have the advantage of
the non invasiveness combined with a high sensitivity and speci-
ficity. They are mostly based on the broadening of the signal
caused by Heisenberg exchange between molecular oxygen and
the spin probe to determine pO2. Two different types of spin probes
are used in EPR oximetry, either particulate materials like lithium
phthalocyanine, chars, coals, carbon black, or soluble molecules,
namely, nitroxides and the triarylmethyl (trityl) radicals. By the
late 90s, Nycomed Innovation AB featured original Gomberg’s trityl
radical in order to avoid hydrogen hyperfine coupling and enhance

its stability and water solubility.3 A new family of trityl spin probes
was synthesized, also known as tetrathiatriarylmethyl (TAM),
bearing four sulfur atoms on the phenyl ring (Fig. 1). The most rep-
resentative members are water soluble CT-03, deuterated CT-03
and OX063 which exhibit a very narrow EPR linewidth, non toxic
properties and are less sensitive to bioreduction than nitroxides.4,5

Due to their unique properties, TAM type radicals have found num-
ber of MR applications as oxygen/pH sensitive spin probes or as
contrast agents in electron paramagnetic resonance imaging (EPRI)
and Overhauser magnetic resonance imaging (OMRI).5,6 Moreover,
TAM radicals have also been used for measuring superoxide radical
by EPR spectroscopy or by spectrophotometry.7 Recently, creative
efforts have been done for the synthesis of these complex mole-
cules.8,9 CT-03 can now be synthesized in large-scale in an efficient
way.10

Among useful solvents, perfluorinated ones are well known for
their excellent capacity to dissolve a high quantity of non polar
gases like O2. Many of them can at physiological temperature
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Figure 1. Representative Nycomed’s trityl radicals.

Bioorganic & Medicinal Chemistry Letters 18 (2008) 4291–4293

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier .com/ locate/bmcl



Author's personal copy

dissolve up to 40–50% v/v oxygen at 1 atm.11 For instance, several
PFCs have been used in vivo for their excellent oxygen solubility,
such as hexafluorobenzene (HFB) that is utilized in animal models,
and perfluorooctylbromide (PFOB) that is in clinical use. Recently,
the group of Kuppusamy took advantage of that special property
in the synthesis of a triethoxycarbonyl perchlorotriarylmethyl rad-
ical (PTM-TE) and the use of PTM-TE/HFB formulation for high-res-
olution oxygen mapping in tumor using EPR spectroscopy.12,13 This
group reported a high sensitivity of the line broadening with
molecular oxygen in HFB. The sensitivity in HFB is at least 10 times
as high as in DMSO, mainly due to the high solubility of oxygen in
this solvent.

In the course of our research on the development of new tools
for the assessment of tumor oxygenation by EPR spectroscopy
using biocompatible perfluorocarbon (PFC) emulsions, we sought
to enhance the affinity of the oxygen spin probe for a PFC formula-
tion by attaching a perfluorinated tag on the trityl radical. Indeed,
the radical derived from trityl ethyl ester 1 is not soluble in PFCs
(solubility inferior to 0.1 mM in PFOB), so introducing a fluorous la-
bel on a molecule is the usual strategy to enhance its fluorophilic-
ity.14 Hereby we report a straightforward access to original
fluorinated trityl oxygen probes.

Two new highly fluorinated TAM radicals, F15T-03 (20% fluo-
rine by weight) and F45T-03 (40% fluorine by weight) were effi-
ciently synthesized in a two-step sequence from precursor 1 as

depicted in Scheme 1. Trityl ester 1 was obtained according to
the procedure described in the literature.8 The aminolyse of ethyl
ester 1 by perfluoroamine (H2NCH2Rf) in presence of trimethylalu-
minum resulted in the formation of fluorinated trityl alcohols 2
(Rf = C2F5) and 3 (Rf = C7F15) in 95% and 66% yields, respectively,
after purification by preparative thin layer chromatography
(TLC).15 It is noteworthy to mention the low nucleophilicity of
these two commercially available fluoroamines. Nevertheless, our
conditions allowed to reach good to excellent isolated yields. In
this first step, the labile trityl alcohol was protected in situ by
the formation of an aluminum alcoholate. Then, treatment of the
trityl alcohols 2-3 with BF3.Et2O gave the corresponding carboca-
tions which are subsequently reduced by SnCl2 to afford the persis-
tent captodative radicals F15T-03 and F45T-03.16

The EPR properties of the two new TAM-type radicals were
comparable to those of other tetrathiatriarylmethyl radicals de-
scribed previously, such as radical of compound 1.8 A single sharp
peak was observed for F15T-03 and F45T-03. The sensitivity of the
EPR linewidth to oxygen was measured by carrying out the calibra-
tion of line broadening DBpp (G) versus pO2 (mmHg). Calibration
curves were built in HFB and PFOB, for F15T-03 and F45T-03,
respectively, according to their respective high solubility in these
solvents. F15T-03 in HFB showed a single sharp peak with a line-
width of 0.550 G under anaerobic conditions and 3.55 G in ambient
room air (21% oxygen) (Fig. 2). The slope of the calibration curve
(18.7 mG/mmHg) is consistent with the results already published
on the PTM-TE in HFB (Fig. 3).12 F45T-03 in PFOB showed a single
sharp peak with a linewidth of 0.545 G under anaerobic conditions
and 3.34 G in ambient room air with a slope of the calibration
curve of 17.5 mG/mmHg. The sensitivity of compound 1 radical
was not measurable using the same conditions due to its poor sol-
ubility in PFCs. For comparison, the sensitivity of CT-03 in water
was 0.64 mG/mmHg. Thus, our novel probes dissolved in PFCs
are about 30-fold more sensitive. As mentioned previously the bet-
ter sensitivity of line broadening to pO2 in perfluorous liquids is the
consequence of the better solubility of oxygen in such media.
While water dissolves 3.1 vol% (25 �C) of oxygen, HFB is able to

Scheme 1. Reagents and conditions: (a) AlMe3, H2NCH2Rf, DCE, reflux, overnight
(95%, Rf = C2F5; 66%, Rf = C7F15). (b) 1_BF3.Et2O, DCM, 1 h, 2_SnCl2/THF, 30 min.

Figure 2. X-band EPR spectra, linewidths (DBpp) of F15T-03 in HFB, F45T-03 in PFOB under anaerobic and air room conditions. The EPR acquisition settings were (a) F15T-03
in HFB; 1 mM filtered on 0.2 lm (Pall Ghp Acrodisc); anaerobic conditions; sweep width: 10 G; power: 200 lW; temperature: 310 K; frequency modulation: 10 kHz;
modulation amplitude: 0.15 G; time constant: 10.24 ms; conversion time: 10.24 ms. (b) F45T-03 in PFOB; 0.25 mM filtered on 0.2 lm (Pall Ghp Acrodisc); anaerobic
conditions; sweep width: 6 G; power: 50 lW; temperature: 310 K; frequency modulation: 100 kHz; modulation amplitude: 0.1 G; time constant: 20.48 ms; conversion time:
20.48 ms.
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dissolve 46.8–48.8 vol% (25 �C) and PFOB 50.0–52.7 vol% (25 �C) of
molecular oxygen.17

Further development of the present study is to use these fluori-
nated tetrathiatriarylmethyl radicals as components of nanocap-
sules containing PFCs. These systems should present high
sensitivity to oxygen and should be biocompatible and injectable
to living systems.

In conclusion, we have disclosed an efficient synthesis of two
new TAM-based radicals possessing a high affinity to fluorous
media. These radicals are specially designed for assessment of tu-
mor oxygenation using PFC formulations. Moreover, the sensitivity
of line broadening is higher in PFC liquids than in water in agree-
ment with the higher solubility of oxygen in these solvents.
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