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Abstract: Because the sepsis-induced pharmacokinetic (PK)

modifications need to be considered in aminoglycoside dosing, the

present study aimed to develop a population PK model for amikacin

(AMK) in severe sepsis and to subsequently propose an optimal

sampling strategy suitable for Bayesian estimation of the drug PK

parameters. Concentration–time profiles for AMK were obtained

from 88 critically ill septic patients during the first 24 hours of

antibiotic treatment. The population PK model was developed using

a nonlinear mixed effects modeling approach. Covariate analysis

included demographic data, pathophysiological characteristics, and

comedication. Optimal sampling times were selected based on a

robust Bayesian design criterion. Taking into account clinical con-

straints, a two-point sampling approach was investigated. A two-

compartment model with first-order elimination best fitted the AMK

concentrations. Population PK estimates were 19.2 and 9.34 L for the

central and peripheral volume of distribution and 4.31 and 2.21 L/h

for the intercompartmental and total body clearance. Creatinine

clearance estimated using the Cockcroft-Gault equation was retained

in the final model. The two optimal sampling times were 1 hour and 6

hours after onset of the drug infusion. Predictive performance of

individual Bayes estimates computed using the proposed optimal

sampling strategy was reported: mean prediction errors were less than

5% and root mean square errors were less than 30%. The present

study confirmed the significant influence of the creatinine clearance

on the PK disposition of AMK during the first hours of treatment in

critically ill septic patients. Based on the population estimates, an

optimal sampling strategy suitable for Bayesian estimation of the

drug PK parameters was developed, meeting the need of clinical

practice.
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INTRODUCTION
Amikacin (AMK) is an aminoglycoside commonly used

in intensive care units (ICUs) for the treatment of patients with
life-threatening Gram-negative infections. The drug exhibits
a bactericidal effect related to its concentration (ie, concen-
tration-dependent killing) with a prolonged postantibiotic
effect and a toxicity related to the total drug exposure.1 Like
other aminoglycosides, AMK displays a narrow range between
effective and toxic concentrations, supporting the practice of
therapeutic drug monitoring (TDM). Its nephro- and ototox-
icities have widely guided attempts to rationalize the drug
dosage strategy.1,2

The pharmacokinetic (PK) behavior of the drug is
known to be influenced by pathophysiological conditions.3

During severe sepsis and septic shock, AMK disposition is
altered by an increased volume of distribution (Vd) and
a reduced total body clearance (CL) as a result of leaky
capillaries, decreased protein binding, and organ failure.4–9

Regrettably, antibiotic dosing regimens used in the ICU rarely
take into account the sepsis-induced PK modifications,
particularly critical at the early stage of the disease course.
In addition, because (patho)physiological changes associated
with sepsis determine a wide PK variability,10,11 an empiric
dosing strategy of AMK is difficult in critically ill septic
patients, reinforcing the role of TDM. It is therefore of interest
to explore all approaches allowing to predict and control PK
variability of the drug in this patient population to propose
individualized dosing regimens. To date, several (patho)phys-
iological factors are reported to account for PK variability of
AMK in ICU patients with sepsis: body weight, oxygen
extraction ratio, serum albumin, and sepsis severity (estimated
by the Acute Physiology And Chronic Health Evaluation
[APACHE] II score) for the Vd variability, creatinine
clearance, positive end-expiratory pressure, and catecholamine
administration for the CL variability.11–15
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Brussels, Belgium; ‡Department of Pharmaceutical Biosciences, Uppsala
University, Uppsala, Sweden; §Department of Infectious Diseases, Hôpital
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Among PK-based dosing methods dedicated to the
aminoglycoside TDM, the Bayesian maximum a posteriori
approach appears attractive for ICU patients. Unlike non-
Bayesian methods (eg, nomogram, non-Bayesian least-squares
method), the maximum a posteriori estimation displays better
predictive performance for individualized drug dosage,
because it incorporates some prior information (ie, covariates,
PK model, residual error model, prior distributions).16,17 In
addition, the Bayesian estimation can be performed using
a limited number of concentrations, as is usually the case in
ICU patients. However, such a method depends on the quality
of the population estimates.18 In addition, the relative lack of
suitable population data may limit the success of the Bayesian
approach. To date, some population models have been
described for AMK PK in critically ill septic patients at
steady state,11–14,18 but none has been developed in the early
phase of the septic process.

The objectives of the present study were 1) to
characterize the population PK of AMK in 88 critically ill
septic patients during the first 24 hours of antibiotic treatment;
2) to assess and model the effect of demographic and patho-
physiological factors on the PK of the drug using a nonlinear
mixed effects modeling approach; and 3) to develop an
optimal sampling strategy suitable for Bayesian estimation
taking into account clinical constraints.

MATERIAL AND METHODS

Patients and Sampling
Patients with a diagnosis of severe sepsis or septic shock

fulfilling the standard criteria19 were included. Severe sepsis
was defined as sepsis associated with organ dysfunction
assessed by the Sepsis-related Organ Failure Assessment
score.20 Septic shock was defined as an acute circulatory
failure characterized by persistent arterial hypotension needing
vasopressor drugs. The study was observational and was
conducted in ICUs of four Belgian university hospitals
(Cliniques universitaires St-Luc, Hôpital Erasme and Uni-
versitair Ziekenhuis Brussel in Brussels and Clinique St-Pierre
in Ottignies) after approval by the respective Ethics
Committees. Written consent was obtained from patients or
their legal representatives. Patients aged younger than 18 years
or older than 90 years with chronic renal failure requiring
dialysis previously treated (or having developed allergy) with
any investigated drugs during the week before inclusion were
excluded as well as pregnant and breastfeeding females.

All data from routine clinical care were recorded before
onset of antibiotic treatment, ie, demographic data, complete
blood count and routine biochemistry markers, admission
diagnoses, APACHE II scores, and Sepsis-related Organ
Failure Assessment scores.21,22

Patients were treated with a first dose of AMK
(25 mg/kg) combined with a broad-spectrum b-lactam
(piperacillin, ceftazidime, cefepime, or meropenem), selected
according to local clinical practice. The combination was
given by two separate intravenous lines as a 30-minute
infusion. The study period was limited to the first 24 hours of
antibiotic therapy, considered as the most critical period in the

management of patients with severe sepsis or septic shock.
Next, doses of AMK were determined according to the local
TDM practice (involving trough and peak concentrations to
assess toxicity and efficacy, respectively). Furthermore,
b-lactam administration was based on standard dosing
regimens and adapted to renal function.

Blood samples were drawn without anticoagulant
immediately before and 1, 1.5, 4.5, 6 or 8, and 24 hours
after onset of the first infusion. The exact sampling times were
recorded by the nursing or medical staff. After centrifugation,
serum samples were stored at –70�C until shipment in dry ice
to the reference laboratory for analysis.

Analytical Assay
All drug analyses were performed in the laboratory of

Cliniques universitaires St-Luc, Brussels. The serum samples
were analyzed for AMK by fluorescence polarization immuno-
assay (TDx; Abbott Laboratories, Abbott Park, IL)23,24

according to the manufacturer’s recommendation with a limit
of quantification of 0.8 mg/L. Quality control samples at 5, 15,
and 30 mg/L were assayed once daily. The method displayed
a between-run imprecision ranging from 3% to 8%.

Population Pharmacokinetic Analysis
PK analysis was carried out using the nonlinear mixed

effects modeling program NONMEM Version VI (double
precision; ICON Development Solutions, LLC, Ellicott City,
MD). A G77 Fortran was used to compile and execute
NONMEM. The program was run with the Perl-speaks-
NONMEM (PsN) tool kit and Xpose (Version 4), for statistical
and graphic model evaluation.25,26

Population Parameter Estimation
The first-order conditional estimation with interaction

method was used to assess population characteristics of AMK
parameters (fixed and random effects). The interindividual
variability (h) was described by an exponential model:

ui ¼ upop � exp ðhiÞ ½1�
where ui is the value of the PK parameter u in the ith individual,
upop is the typical value of u in the population, and hi quantifies
the deviation of ui from upop. h is assumed to be a normal
random variable with a mean of 0 and a variance of v2.

The residual variability (e) was described by an additive,
proportional, or a combined proportional and additive error
model:

Cobs ¼ Cpred þ eadd ½2�

Cobs ¼ Cpred � ð1þ epropÞ ½3�

Cobs ¼ Cpred � ð1þ epropÞ þ eadd ½4�
where Cobs is the observed concentration, Cpred is the predicted
concentration, and eprop (proportional component) and eadd
(additive component) quantify the deviation of Cobs from Cpred.
e is assumed to be a normal random variable with a mean of
0 and a variance of s2.

Both one- and two-compartment models with first-order
elimination were tested. Initial estimates of parameters for
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NONMEM modeling were obtained from previous PK
analyses using WinNonlin software (Version 5.0.1; Pharsight
Corporation, Mountain View, CA).27,28 Model building was
guided by the NONMEM objective function value, the preci-
sion of estimates, and basic goodness-of-fit plots (ie, observed
versus predicted concentrations, conditional weighted resid-
uals versus predicted concentrations, and conditional weighted
residuals versus time after dose).29

Covariate Model Building
The following patient-specific covariates were tested for

influence on PK parameter estimates: three demographic data
(sex, age, and body weight), four renal function markers
(creatinine, urea and creatinine clearance [CLCR] estimated
either from the Cockcroft-Gault equation,30 or from the
simplified Modification of Diet in Renal Disease formula31),
nine hepatic function markers (albumin, total protein, total
bilirubin, aspartate aminotransferase, alanine aminotransfer-
ase, gamma-glutamyl transpeptidase, alkaline phosphatase,
prothrombin time, activated partial thromboplastin time), two
disease severity scores (APACHE II and Sepsis-related Organ
Failure Assessment) and each of the associated (patho)phys-
iological variables (eg, potassium, hematocrit, white blood
count, arterial oxygen tension/fractional inspired oxygen
ratio),20,21 four hemodynamic characteristics (presence of
septic shock, mechanical ventilation, positive end-expiratory
pressure, catecholamine administration), one inflammatory
marker (C-reactive protein), two types of resuscitation fluids
(crystalloid and colloid solutions), and the coadministered
b-lactam (piperacillin, ceftazidime, cefepime, or meropenem).
Missing values (less than 3% on all data) were replaced by the
respective median or mode of the population. Individual Bayes
estimates of PK parameters were generated, and covariate–PK
parameter relationships were visually inspected and investi-
gated in NONMEM. The final model was built using a two-
stage approach:

1. In the first step, continuous covariates were centered to their
median and separately added to the structural model in
a linear or nonlinear way:

upop ¼ u1 þ u2 � covð Þ ½5�

upop ¼ u1 þ covu2 ½6�
where u1 is the typical value of the PK parameter and u2 is the
fractional change on u1 resulting from the covariate (cov).

Categorical covariates were coded as dichotomous
variables (cov = 1 if present, cov = 0 if absent) and tested
for influence on PK parameter estimates according to the
Equation 5. A decrease in objective function value 6.64 or
greater (x2 distribution, P# 0.01, degree of freedom = 1) from
the structural model was considered statistically significant.

2. In the second step, a full model was built, including all
covariates that showed significant influence on PK
parameters. Starting from the full model, a backward
selection was performed: covariates which on deletion
resulted in an increase in objective function value 10.83
or greater (x2 distribution,P# 0.001, degree of freedom= 1)
were retained in the final model.

Model Validation
Evaluation of the final model was conducted using a

nonparametric bootstrap procedure, case-deletion diagnostics,
and visual predictive check.25,32,33 For the bootstrap analysis,
1000 replicates of parameter estimates were generated from
the original patient data, and the medians and the 2.5th and
97.5th percentiles of the bootstrap distributions were com-
pared with the final model estimates. For the case-deletion
diagnostics, a Cook score and a covariance ratio were com-
puted for each individual; patients with a Cook score greater
than 1 combined with a covariance ratio less than 0.5 were
considered as influential individuals. For the visual predictive
check, 1000 subjects were simulated from the final model
estimates, and the 95% prediction interval was compared with
the time course of observed concentrations.

Optimal Sampling Strategy
The optimal sampling strategy was performed using

PopED software (Version 2.10; http://poped.sourceforge.net),
written in high-performance language for MATLAB software
and provided with a Graphical User Interface for Windows
users.34,35 Optimization was performed over sampling times
using a Bayesian optimal design criterion. Based on the
determinant of the robust Bayesian information matrix,36 this
criterion was computed on the individual level, as previously
reported.37 Optimal sampling times were selected using a
stochastic gradient algorithm, as proposed by Pronzato and
Walter.38 Prior information of the AMK parameter distribution
was obtained from the population PK analysis. Taking into
account clinical constraints, a two-point sampling strategy was
investigated with a total sampling period of 1 to 6 hours after
start of the drug infusion. Indeed, a blood sampling timeframe
of 0 to 6 hours would allow most likely the involvement of the
same nursing staff and a combined samples shipment to
the laboratory.

RESULTS

Patients
Eighty-eight adult patients with severe sepsis or septic

shock were enrolled in the study over a period of 20 months.
Twenty-eight patients were reported to be comedicated with
piperacillin, 19 with ceftazidime, 20 with cefepime, and 21
with meropenem. Five hundred seven blood samples were
collected with a number of samples varying from four to six
per patient. Four percent of samples were missing for clinical
reasons (eg, surgery, medical tests). Individual concentration–
time profiles are given in Figure 1 and revealed, as expected,
a large variability in AMK concentrations. Table 1 presents
a summary of the patient characteristics.

Population Pharmacokinetic Analysis
A two-compartment model with first-order elimination

best fitted the AMK concentrations. The model was param-
eterized in terms of central volume of distribution (V1),
peripheral volume of distribution (V2), intercompartmental
clearance (Q), and CL. A combined proportional and additive
model adequately described residual variability. The popula-
tion PK estimates of the structural model (ie, without
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covariates) are reported in Table 2. Interindividual variability
could be assessed for V1 (39%), V2 (44%), Q (16.5%), and
CL (71.9%). Parameter uncertainty was expressed as the
relative standard error of estimates (RSE) and was small for

fixed-effect parameters (5%–8%, except for Q) and higher for
random-effect parameters (10%–34%, except for the in-
terindividual variability in Q).

The full model included, in a linear way, sex and weight
as significant covariates on V1 and weight, APACHE II score,
and CLCR estimated by the Cockcroft-Gault and Modification
of Diet in Renal Disease formula equations as significant
covariates on CL. Only the CLCR calculated using the
Cockcroft-Gault formula was retained in the final model after
backward elimination. Table 2 presents the final population PK
estimates with their respective RSE. Introduction of the
significant covariate reduced the interindividual variability in
CL from 71.9% to 59.2%.

Basic goodness-of-fit plots for the final model of AMK
are displayed in Figure 2 and did not reveal obvious model
misspecification. Predicted concentrations were closely and
symmetrically scattered around the line of identity (Fig. 2A–B),
and the conditional weighted residuals were centered to zero
and marked no trend over time (Fig. 2C–D). Table 2 lists the
results of 1000 bootstrap replicates, presented as medians with
2.5th and 97.5th percentiles. Bootstrap median values closely
agreed with the population estimates of the final model. Figure
3 illustrates the visual predictive check plot and revealed
a substantial overlap of the simulated distributions with the
observations. A total of 94.3% observed concentrations fell
within the 95% prediction interval (2.1% observed concen-
trations were outside the lower limit and 3.6% observed
concentrations were outside the upper limit of the 95%
prediction interval) and were symmetrically distributed around
the median. Case-deletion diagnostics revealed no patient
substantially influencing any of the estimates (ie, no patients
with a Cook score greater than 1 combined with a covariance
ratio less than 0.5).

Optimal Sampling Strategy
The optimal sampling times for Bayesian estimation of

the AMK PK, obtained using PopED software, were 1 and 6
hours after onset of the drug infusion. Because the optimal
times actually corresponded to sampling times of the clinical
study, predictive performance of the optimal sampling strategy
was investigated. For this purpose, individual Bayes estimates
were firstly computed within NONMEM (POSTHOC option
with MAXEVAL = 0) using, separately:

1. All the sampling time points of the clinical study; and
2. One and 6 hours after onset of the infusion.

Second, predictive performance of individual Bayes
estimates computed using the optimal sampling times was
assessed by the relative mean prediction error (MPE%) as
a measure of bias and the relative root mean square prediction
error (RMSE%) as a measure of precision39:

MPE% ¼
+
n

i¼1

PEi

n
� 100% ½7�

FIGURE 1. Individual concentration–time profiles in critically ill
septic patients (n = 88) after administration of a first dose of
amikacin (25 mg/kg) infused in 30 minutes.

TABLE 1. Characteristics (median values [range]) of 88
Critically Ill Septic Patients Before the Start of Antibiotic
Treatment (25 mg/kg amikacin combined with a broad-
spectrum b-lactam)

Demographic, Clinical, and Biologic Data

Male/female % 65/35

Age years 65 (22–89)

Body weight kg 70 (38–125)

Severe sepsis/septic shock % 29/71

APACHE II score 20 (6–45)

SOFA score 8 (1–19)

Mechanical ventilation % 52

Catecholamine administration % 53

Resuscitation fluids

Infused crystalloid solution mL 2800 (200–7445)

Infused colloid solution mL 1000 (0*–3379)

C-reactive protein mg/L 16.6 (0.13–299.9)

Creatinine mg/dL 1.2 (0.2–6.6)

Urea mg/dL 69 (13–236)

Creatinine clearance† mL/min 55.5 (12.3–408.3)

Albumin g/dL 1.8 (0.8–4.9)

Total protein g/dL 4.2 (1.1–8)

Bilirubin mg/dL 0.9 (0.1–59)

*Reported for 12 patients.
†Estimated using the Cockcroft-Gault equation.
APACHE, Acute Physiology And Chronic Health Evaluation; SOFA, Sepsis-related

Organ Failure Assessment.
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RMSE% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
n

i¼1

PEið Þ2

n

vuuut
� 100% ½8�

where PE is the prediction error, defined as [reference value –
predicted value], and n is the number of PK parameter pairs
(ie, reference and predicted values). PK parameters estimated
using all the sampling time points of the clinical study were
investigated in the equations as reference values, whereas
those estimated using the optimal sampling times were
investigated as predicted values.

Predictive performance of individual Bayes estimates
computed using the optimal sampling strategy is summarized
in Table 3; MPE% and RMSE% were, respectively, less 1.1%
and less than 9% for both V1 and Q and less than 4.6% and
less than 29.1% for both V2 and CL.

DISCUSSION
Several population PK models have been developed for

aminoglycosides in patients with altered PK behavior,
including ICU patients. However, few models have been
described for AMK in critically ill septic patients.11–14,18

Moreover, to our knowledge, no clinical study has focused on
the critical period in the management of these patients (ie, first
hours of treatment). In the present study, a population PK
model has been developed based on AMK concentrations of
88 critically ill septic patients during the first 24 hours of
antibiotic treatment (25 mg/kg AMK once daily combined
with a broad-spectrum b-lactam). Typical parameters, their
corresponding interindividual variability, and residual vari-
ability have been used to design an optimal sampling strategy

to develop suitable Bayesian estimators taking into account
clinical practice.

During nonlinear mixed effects modeling, time profiles
of AMK concentrations were described by a two-compartment
model with first-order elimination. Population PK estimates of
the drug confirmed the sepsis-induced PK modifications (ie,
increased Vd and decreased CL)4–9 and were consistent with
most reported values for critically ill septic patients.11–15,18 As
expected, patients were characterized by a wide interindividual
variability in the AMK PK disposition, particularly in the
elimination of the drug (71.9%). Although (patho)physiolog-
ical changes associated to sepsis determine a wide PK
variability,10,11 only CLCR (estimated by the Cockcroft-Gault)
was found to significantly influence the AMK elimination.
Linear dependence between CLCR and AMK CL was not
surprising, because the drug is eliminated through the renal
route. However, no other covariate was retained in the final
population model such as demographic data (body weight),
biologic markers (albumin), clinical characteristics (eg,
APACHE II score, positive end-expiratory pressure) as
reported in previous population PK studies.11–15 A possible
explanation is that the present study was focused on the early
phase of the septic process, unlike other studies, which were
conducted at steady state. Nevertheless, although critically ill
septic patients receive larger quantities of intravenous
resuscitation fluids early in the disease course,40 neither
infused crystalloid or colloid volume nor cumulative total
volume of both fluids was found to explain the interindividual
variability in the AMK Vd.

Fixed-effect parameters of the final population model
were estimated with small RSE, suggesting high precision in
their estimation (Table 2). In contrast, RSE of random-effect
parameters was greater, although less than 32% for all

TABLE 2. Population Parameter Estimates of Amikacin During the First 24 Hours of Treatment in Critically Ill Septic Patients and
Bootstrap Validation

Parameter Unit
Structural Model
Estimate (RSE)

Final Model
Estimate (RSE)

Bootstrap
(n = 1000) Median

(2.5th–97.5th percentiles)

Pharmacokinetic parameter

V1 L 19.2 (5.42%) 19.2 (5.31%) 18.7 (16.6–20.7)

V2 L 9.34 (7.10%) 9.38 (7.15%) 9.59 (8.3–11.1)

Q L/h 4.31 (19.1%) 4.38 (18.3%) 4.72 (3.55–6.93)

CL L/h 2.21 (7.96%) 0.77 (28.4%) 0.78 (0.3–1.18)

Covariate

uCL-CLCR mL/min NA 1.42 (18.4%) 1.4 (0.95–1.97)

Interindividual variability

V1 (CV) % 39 (18.8%) 39.1 (18.8%) 38.6 (32.2–46.1)

V2 (CV) % 44 (33.5%) 43.6 (31.7%) 41.5 (30.7–54.4)

Q (CV) % 16.5 (224%) 16.7 (202%) 20.9 (2.97–43.4)

CL (CV) % 71.9 (12.6%) 59.2 (14.8%) 58.3 (50.2–68.4)

Residual variability

Proportional error (CV) % 26.8 (10.2%) 26.8 (10.2%) 26.2 (21.4–28.5)

Additive error (SD) mg/L 1.02 (30.4%) 1.03 (29.7%) 1.01 (0.69–1.41)

OFV 2127 2095 2075

RSE, relative standard error of estimates; V1, central volume of distribution; V2, peripheral volume of distribution; Q, intercompartmental clearance; CL, total body clearance;
uCL-CLCR, fractional change on CL resulting fromcreatinine clearance (CLCR); CV, coefficient of variation; SD, standard deviation; OFV, objective function value; NA, not applicable.
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estimates (except for the interindividual variability in Q).
Moreover, the final model was found to adequately fit the
AMK data; no obvious bias or model misspecification was
identified (Fig. 2), and the model was found to be stable, robust
(Table 2) and accurate (Fig. 3).

Traditionally, peak and trough concentration values are
used to perform Bayesian estimation of the aminoglycoside

PK parameters17 without identifying the most informative
times according to the optimal sampling theory. For the first
time, a two-point Bayesian method was developed, based on
a robust design criterion, to propose a practical and convenient
sampling strategy for AMK in critically ill septic patients.
Although attractive, the robust optimality approach has not
been widely used in population PK/pharmacodynamics. To

FIGURE 2. Basic goodness-of-fit plots for the final model of amikacin in critically ill septic patients: (A) observed concentrations vs.
population predicted concentrations; (B) observed concentrations versus individual predicted concentrations; (C) conditional
weighted residuals versus population predicted concentrations; (D) conditional weighted residuals versus time. The line x = y is the
identity line. The bold line is the LOESS smooth.
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our knowledge, robust criterions for Bayesian design have
been implemented in OSP-Fit, PopED and POPT software
packages.34,41,42 In the present study, optimal sampling times
were obtained using PopED software34,35 based on the
determinant of the robust Bayesian information matrix36; the
two optimal times were found to be at 1 and 6 hours after onset
of the drug infusion. Predictive performance of this sampling
design was satisfactory, because accuracies were less than 5%
and precisions were less than 29.1% (Table 3).

To cover more potential patients, a further optimal
sampling strategy was similarly performed based on the
determinant of the robust Bayesian information matrix with, in
addition, consideration of uncertainty around the population
parameters. When considering uncertainty, optimal times

consisted in two replicates at 6 hours after onset of the drug
infusion. Practical meaning of replications has been addressed
in a previous paper by Merlé and Mentré; according to the
main source of experimental error (analytics, contaminations,
etc), replications can be performed either by splitting the
collected sample into two parts before drug measurement or by
drawing two samples at the same time from two different sites.43

Because the last option appears unrealistic in routine practice,
a single sample drawn at 6 hours and split into two parts before
dosing could be preferred for obvious nursing reasons. Because,
in the present study, only a single measurement at 6 hours was
available from the database, predictive performance of the
sampling strategy using replications could not be assessed. A
prospective validation of the sampling design should be
performed using replications at 6 hours after onset of the first
drug infusion as well as using 1 and 6 hours.

The study highlighted the significant influence of the
Cockcroft-Gault CLCR on the PK disposition of AMK in
critically ill septic patients during the early phase of the disease
process. Using developed population estimates of the drug, an
optimal two-point sampling strategy was proposed for this
patient population based on a robust Bayesian design criterion.
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36. Merlé Y, Mentré F. Bayesian design criteria: computation, comparison,
and application to a pharmacokinetic and a pharmacodynamic model.
J Pharmacokinet Biopharm. 1995;23:101–125.

37. Hennig S, Nyberg J, Fanta S, et al. Application of the optimal design
approach to improve therapeutic drug monitoring for cyclosporine
[Abstract]. Abstracts of the Annual Meeting of the Population Approach
Group in Europe (PAGE). 2008;17:1436.

38. Pronzato L, Walter E. Robust experiment design via stochastic
approximation. Math Biosci. 1985;75:103–120.

39. Sheiner LB, Beal SL. Some suggestions for measuring predictive
performance. J Pharmacokinet Biopharm. 1981;9:503–512.

40. Rivers E, Nguyen B, Havstad S, et al; Early Goal-Directed Therapy
Collaborative Group. Early goal-directed therapy in the treatment of
severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377.

41. Tod M, Rocchisani JM. Implementation of OSPOP, an algorithm for
the estimation of optimal sampling times in pharmacokinetics by the ED,
EID and API criteria. Comput Methods Programs Biomed. 1996;50:
13–22.

42. Duffull S, Waterhouse T, Eccleston J. Some considerations on the design
of population pharmacokinetic studies. J Pharmacokinetic Pharmacodyn.
2005;32:441–457.
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