

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 60 (2004) 10321-10324

Efficient and selective deprotection method for *N*-protected 2(*3H*)-benzoxazolones and 2(*3H*)-benzothiazolones

Pascal Carato,^{a,*} Saïd Yous,^a Didier Sellier,^a Jacques H. Poupaert,^b Nicolas Lebegue^a and Pascal Berthelot^a

^aLaboratoire de Chimie Thérapeutique, Faculté de Pharmacie, EA 1043, 3, rue du Professeur Laguesse, BP 83, 59006 Lille cedex, France ^bLaboratory of Medicinal Chemistry, School of Pharmacy, UCL, Avenue Emmanuel Mounier, 73, B-1200 Brussels, Belgium

Received 25 May 2004; accepted 19 August 2004

Available online 22 September 2004

Abstract—Cyclic carbamate flanked with heterocyclic or aliphatic moieties are frequently used in medicinal chemistry. The synthesis of derivatives bearing a free NH often requires the use of a protection method. A literature search reveals very few protection/deprotection methods for cyclic carbamates. In this paper, we described different methods applicable to 2(3H)-benzoxazolone and 2(3H)-benzothiazolone. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

2(3H)-Benzoxazolones and 2(3H)-benzothiazolones derivatives have attracted considerable attention as a result of their medicinal properties. Several potentially useful drugs and pharmacological tools based on these pharmacophores have been developed in recent years.¹⁻⁶ *N*-methyl-2(3H)-benzoxazolones and 2(3H)-benzothiazolones have been largely used in medicinal chemistry, but surprisingly their N–H homologues are less accessible although in many cases, a free N(3)–H group is an essential structural requirement for activity and receptor selectivity of these 2(3H)benzazolones derivatives. Moreover, the NH heterocycle can serve as a pivotal structure for the constitution of a library N-derivatized analogues.

Indeed, in many cases encountered in our own research, reactions that are successful in the N-methyl series cannot be applied in the N–H series: C(6)-formylation,^{7,8} C(6)-tributyltin derivatization, photohalogenation,⁹ crotonisation, etc.^{10,11} Obviously, the use of N-protected 2(3H)-benzazolones are in order for the success of these reactions. However, close inspection of the literature reveals very few indications concerning protecting groups of cyclic carbamates that can be easily introduced and subsequently smoothly removed. Indeed, benzyl protecting group¹² was found in this series of heterocycle but reaction of

0040–4020/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.08.070

formylation, acylation or the cleavage of N-benzyle derivative with NBS, AIBN could induced secondary products. Therefore, in an effort to fill this gap, we explored various protecting groups and examined their ease of deprotection.

2. Results and discussion

2.1. Protection/deprotection of cyclic carbamate on phenyl ring (1a,b) via different methods

The compounds 2a,b-10a,b, in Scheme 1, were synthetized by methods A or B, according the reagent desired, with 2(3H)-benzoxazolone (1a) or 2(3H)-benzothiazolinone (1b). Various deprotection methods, described in Table 1, were then tested.

As expected, deprotection of derivatives **2a** and **2b** did take place under mild acid (methods C and D), basic (method F)

Scheme 1. Protection and deprotection of 2(3H)-benzazolones derivatives (2a,b–10a,b) via different methods. (a): method A: ClP (P: COR or SO₂R), Bu₄NBr, K₂CO₃, CH₂Cl₂; method B: ClP (P: MOM or MEM), K₂CO₃, DMF (b) method C: TFA; method D: HCl 12 N (3 équiv), MeOH; method E: TiCl₄ (3 équiv), CH₂Cl₂; method F: KOH (3 équiv), MeOH; method G: Bu₄NF (1 M in solution in THF, 3 équiv), THF.

Keywords: 2(3*H*)-Benzoxazolone; 2(3*H*)-Benzothiazolone; Protecting groups.

^{*} Corresponding author. Tel.: +33-3-20964040; fax: +33-3-20-964913; e-mail: pcarato@pharma.univ-lille2.fr

Table 1. re-	sults of depro	otection attempt	pts of 2(3H)-	benzazolones	derivatives	(2a, b-1)	0a,b)
--------------	----------------	------------------	---------------	--------------	-------------	-----------	-------

Entry	Х	Protecting groups	TFA (C)	HCl-MeOH (D)	TiCl ₄ -CH ₂ Cl ₂ (E)	KOH-MeOH (F)	Bu ₄ NF-THF (G)
2a	0	0 II	1 h rt (85%)	2 h rt (79%)	Ν	0.5 h rt (89%)	1 h rt (91%)
2b	S	СН3	1 h rt (81%)	1.5 h rt (89%)	Ν	0.5 h rt (68%)	1 h rt (95%)
3a	0	O II	Ν	Ν	Ν	0.5 h rt (30%)	1 h rt (95%)
3b	S	Ph	Ν	Ν	Ν	0.5 h rt (91%)	1 h rt (97%)
4a	0	0	Ν	Ν	Ν	0.5 h rt (78%)	0.25 h rt (98%)
4b	S	N Et H	Ν	Ν	Ν	0.5 h rt (94%)	0.25 h rt (95%)
5a	0	0 I	Ν	Ν	Ν	0.5 h rt (39%)	0.25 h rt (89%)
5b	S	Et	Ν	Ν	Ν	0.5 h rt (90%)	0.25 h rt (94%)
6a	0	O II	Ν	Ν	2 h rt (90%)	0.5 h rt (20%)	0.5 h rt (96%)
6b	S	^U O ^{Ph}	Ν	Ν	2 h rt (86%)	0.5 h rt (95%)	0.5 h rt (98%)
7a	0	0	Ν	Ν	Ν	0.5 h rt (10%)	0.5 h rt (96%)
7b	S	^S ⊂CH ₃	Ν	Ν	Ν	0.5 h rt (90%)	0.5 h rt (93%)
8a	0	0,0	Ν	Ν	Ν	Ring opening	1 h rt (93%)
8b	S) S Ph	Ν	Ν	Ν	Ν	1 h rt (97%)
9a	0	<u></u>	4 h reflux (92%)	Ν	Ν	Ν	Ν
9b	S		4 h reflux (96%)	Ν	Ν	Ν	Ν
10a	0	$\sim_0 \sim_0 \sim$	4 h reflux (95%)	Ν	Ν	Ν	Ν
10b	S	č	4 h reflux (97%)	Ν	Ν	Ν	Ν

N: unsuccessful test performed 1 day at room temperature and then 1 day at reflux; rt: room temperature.

and neutral (method G) conditions and therefore the *N*-acetyl cannot be considered as a good protecting group. Compounds **3a,b–5a,b** and **7a,b**, respectively with COPh, CONHEt, CO₂Et and SO₂Me, resisted in acid medium (methods C, D and E). Application of the method F, in basic media, to the compounds **3b–5b** and **7b** give the desired derivative **1b** with good yield (90–95%), but in the 2(*3H*)-benzoxazolone series (**3a–5a** and **7a**) we observed that deprotected compounds were accompanied by important amounts of ring opening products (such as 2-aminophenol) which reduced the yield (10 to 78%). Deprotection method G, for compounds **3a,b–5a,b** and **7a,b**, with Bu₄NF in THF,^{13,14} however gives excellent yields (89–98%).

Compound **6a,b** (Cbz protected) was not deprotected in acid media (method C and D) but in mild basic media (X=S: 95% and X=O: 20%) with method F (30 min at rt) and also by methods E and G with excellent yields (86–98%). Another attempt of deprotection of **6a,b** was performed by hydrogenolysis in THF using Pd/C (5 h, rt), which gave the deprotected derivatives **1a,b** with excellent yields (X=O: 94% and X=S: 97%). Method G with Bu₄NF in THF was found to be a very good alternative (**6a**: 96% and **6b**: 98%) specially because we did not observe any ring opening products.

Surprisingly, with compound **8b** we did not observe any deprotection either in acid or basic medium (methods C, D, E and F). In the corresponding 2(3H)-benzoxazolone series (**8a**) we observed ring opening, which gave 2-amino-(*N*-

phenylsulfonyl) phenol. Compounds **8a,b** were successfully cleaved with Bu_4NF (THF, rt, 1 h, 93 and 97%). Deprotection of compounds **9a,b** and **10a,b** was realized only in TFA at reflux for 4 h, nevertheless with very good yields (92 to 97%).

In order to validate the interest of the protecting group for 2(3H)-benzazolone, we applied our results to a benchmark, i.e. the synthesis of 6-benzoyl-2(3H)-benzothiazolone. In our laboratory we observed indeed that the introduction of tributyltin in the 6-position of the 2(3H)-benzothiazolone could be performed only on N-methyl compounds and not on the free NH series. In Scheme 2, we introduced the MEM protecting group on 6-bromo-2(3H)-benzothiazolone (12) to synthetise the corresponding tributyltin derivative. The benzoyl moiety was then easily introduced and the resulting

Scheme 2. Protection of 2(3H)-benzothiazolone. (a): MEM-Cl, K₂CO₃, DMF (b): (Bu₃Sn)₂, Pd(PPh₃)₄, toluene (c): ClCOPh, PdCl₂(PPh₃)₂, toluene (d): TFA.

compound was then deprotected to afford the free NH derivative (15).

More specifically, 6-bromobenzothiazolinone¹⁵ (11) was protected in DMF with MEM group to afford compound 12. Tributyltin derivative 13 was obtained from the bromo precursor 12 via Stille's reaction with $(Bu_3Sn)_2$ and $Pd(PPh_3)_4$ in toluene. Compound 13 can then embarked in coupling reactions with various aryl or cycloalkylcarbonyl chlorides. In Scheme 2, to exemplify the validity of our approach, we introduced a benzoyl group in 6-position to give derivative 14. The MEM protection group was then cleaved in refluxed TFA for 2 h to furnish the expected compound 15.¹⁶

3. Conclusion

In conclusion, we found different protecting groups which can be used in acid or basic medium reaction conditions and subsequently removed without major problems. The COPh, CONHEt, CO₂Et, CO₂CH₂Ph, SO₂CH₃ derivatives (**3a**,**b**– **7a**,**b**) resisted in acid conditions and were cleaved in basic medium. MOM and MEM protection (**9a**,**b**–**10a**,**b**) resisted in basic media and were cleaved in TFA. The SO₂Ph protection (**8b**) resisted in acid and basic media and was cleaved with Bu₄NF in THF (method G).

Method G in particular constitutes a mild and selective method of deprotection for *N*-protected-2(*3H*)-benzazolones (derivatives **3a,b–8a,b**) with excellent yields (89–98%) and was compatible both with acid or basic-sensitive groups. To exemplify the validity of our approach, we synthesized compounds **15** via *N*-MEM protection. These deprotection methods could be extended to other cyclic carbamates, such as oxazolo[4,5]pyridin-2(*3H*)-ones, hydantoins, and barbiturates.

4. Experimental

4.1. General methods of protection

Method A (2a,b-8a,b). To a solution of 2(3H)-benzazolones (22 mmol) in CH₂Cl₂ (30 mL), K₂CO₃ (66 mmol), Bu₄NBr (1 mmol) and the desired acid chloride reagent (66 mmol) were added. The reaction was refluxed for 4 h. The solvent was evaporated under reduce pressure. The solution was hydrolyzed with water (30 mL) and stirred for 1 h. The precipitate was filtered and recrystallized from the appropriate solvent.

Method B (**9a,b–10a,b**). To a solution of 2(3H)-benzazolones (22 mmol) in DMF (30 mL), K₂CO₃ (66 mmol) was added. The reaction was stirred at 80 °C for 1 h and the desired chlororeagent (66 mmol) added. The solution was stirred for 3 h at the same temperature. The solution was evaporated under reduced pressure. The solution was hydrolyzed with water (30 mL) and stirred for 1 h. The precipitate was filtered and recrystallized with the appropriate solvent.

4.1.1. 3-Acetyl-2(3H)-benzoxazolone (2a). Yield 90%

(cyclohexane). Mp 90–91 °C. IR (KBr) 2870, 1726, 1688, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =2.75 (s, 3H), 7.15–7.29 (m, 3H), 8.25 (m, 1H).

4.1.2. 3-Acetyl-2(*3H*)-**benzothiazolone** (**2b**). Yield 84% (cyclohexane). Mp 103–104 °C. IR (KBr) 2930, 1695, 1676, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =2.80 (s, 3H), 7.03–7.24 (m, 3H), 8.15 (m, 1H).

4.1.3. 3-Benzoyl-2(*3H*)-**benzoxazolone** (**3a**). Yield 70% (cyclohexane). Mp 178–179 °C. IR (KBr) 1805, 1697, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =7.25–7.38 (m, 3H), 7.48–7.59 (m, 2H), 7.67 (m, 1H), 7.81–7.92 (m, 3H).

4.1.4. 3-Benzoyl-2(*3H*)-benzothiazolone (3b). Yield 81% (cyclohexane). Mp 165–166 °C. IR (KBr) 1702, 1724, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =7.32–7.48 (m, 3H), 7.65–7.78 (m, 2H), 7.84 (m, 1H), 7.95–8.14 (m, 3H).

4.1.5. 3-Ethylaminocarbonyl-2(*3H*)-benzoxazolone (4a). Yield 80% (cyclohexane). Mp 104–106 °C. IR (KBr) 3350, 2970, 1737, 1658, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =1.30 (t, *J*=7.30 Hz, 3H), 3.20 (q, *J*=7.30 Hz, 2H), 5.00 (m, 1H), 7.23–7.30 (m, 3H), 8.05 (m, 1H).

4.1.6. 3-Ethylaminocarbonyl-2(*3H*)-benzothiazolone (**4b**). Yield 88% (cyclohexane). Mp 112–113 °C. IR (KBr) 3340, 2954, 1701, 1665, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ = 1.35 (t, *J*=7.20 Hz, 3H), 3.20 (q, *J*=7.20 Hz, 2H), 5.05 (m, 1H), 7.11–7.23 (m, 3H), 8.10 (m, 1H).

4.1.7. 3-Ethoxycarbonyl-2(*3H*)-benzoxazolone (5a). Yield 70% (petroleum ether). Mp 70–71 °C. IR (KBr) 2975, 1852, 1747, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =1.51 (t, *J*=7.34 Hz, 3H), 4.55 (q, *J*=7.34 Hz, 2H), 7.26–7.38 (m, 3H), 7.80 (m, 1H).

4.1.8. 3-Ethoxycarbonyl-2(*3H*)-**benzothiazolone** (**5b**). Yield 90% (petroleum ether). Mp 65–66 °C. IR (KBr) 2971, 1845, 1746, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =1.50 (t, *J*=7.30 Hz, 3H), 4.50 (q, *J*=7.30 Hz, 2H), 7.31–7.53 (m, 3H), 8.10 (m, 1H).

4.1.9. Benzyloxycarbonyl-2(*3H*)-benzoxazolone (6a). Yield 70% (cyclohexane). Mp 130–131 °C. IR (KBr) 1809, 1749, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =5.50 (s, 2H), 7.16–7.28 (m, 3H), 7.36–7.46 (m, 3H), 7.50–63–7.24 (m, 2H), 7.75 (m, 1H).

4.1.10. Benzyloxycarbonyl-2(*3H*)-benzothiazolone (6b). Yield 88% (cyclohexane). Mp 62–63 °C. IR (KBr) 1739, 1709, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =5.55 (s, 2H), 7.26–7.45 (m, 8H), 7.55 (m, 1H).

4.1.11. 3-Methylsulfonyl-2(*3H*)-benzoxazolone (7a). Yield 75% (cyclohexane). Mp 142–143 °C. IR (KBr) 1733, 1600, 1185 cm⁻¹. ¹H NMR (CDCl₃) δ =3.50 (s, 3H), 7.18–7.31 (m, 3H), 7.70 (m, 1H).

4.1.12. 3-Methylsulfonyl-2(*3H*)-**benzothiazolone** (7b). Yield 79% (cyclohexane). Mp 148–149 °C. IR (KBr) 1697, 1600, 1185 cm⁻¹. ¹H NMR (CDCl₃) δ =3.60 (s, 3H), 7.28–7.43 (m, 3H), 8.10 (m, 1H).4.1. **4.1.13. 3-Phenylsulfonyl-2**(*3H*)-**benzoxazolone** (8a). Yield 96% (cyclohexane). Mp 145–146 °C. IR (KBr) 1733, 1600, 1190 cm⁻¹. ¹H NMR (CDCl₃) δ =7.25 (m, 1H), 7.35–7.48 (m, 2H), 7.60 (m, 2H), 7.70 (m, 1H), 8.10 (m, 2H), 8.25 (m, 1H).

4.1.14. 3-Phenylsulfonyl-2(*3H*)-**benzothiazolone (8b).** Yield 96% (cyclohexane). Mp 136–137 °C. IR (KBr) 1717, 1620, 1190 cm⁻¹. ¹H NMR (CDCl₃) δ =7.30 (m, 1H), 7.32–7.45 (m, 2H), 7.60 (m, 2H), 7.70 (m, 1H), 8.10 (m, 2H), 8.25 (m, 1H).

4.1.15. 3-Methoxymethyl-2(*3H*)-benzoxazolone (9a). Yield 90% (cyclohexane). Mp 90–91 °C. IR (KBr) 1762, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ = 3.40 (s, 3H), 5.20 (s, 2H), 7.12–7.29 (m, 4H).

4.1.16. 3-Methoxymethyl-2(*3H*)-benzothiazolone (9b). Yield 95% (cyclohexane). Mp 114–115 °C. IR (KBr) 1695, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =3.35 (s, 3H), 5.10 (s, 2H), 7.02–7.24 (m, 4H).

4.1.17. 3-Methoxyethoxymethyl-2(*3H*)-benzoxazolone (**10a**). Yield 90% (cyclohexane). Mp 28–29 °C. IR (KBr) 2882, 1782, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =3.30 (s, 3H), 3.50 (t, *J*=7.00 Hz, 2H), 3.75 (t, *J*=7.00 Hz, 2H), 5.40 (s, 2H), 7.15–7.36 (m, 4H).

4.1.18. 3-Methoxyethoxymethyl-2(*3H*)-**benzothiazolone** (**10b**). Yield 93% (cyclohexane). Mp 75–76 °C. IR (KBr) 2898, 1709, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ =3.30 (s, 3H), 3.50 (t, *J*=7.05 Hz, 2H), 3.70 (t, *J*=7.05 Hz, 2H), 5.35 (s, 2H), 7.06–7.28 (m, 4H).

4.1.19. 6-Bromo-3-methylethoxymethyl-2(*3H*)-**benzo-thiazolone** (12). To a mixture of 6-bromo-2(*3H*)-benzo-thiazolone (11) (5 g, 21.7 mmol) in DMF (50 mL), potassium carbonate (9 g, 65.2 mmol) and MEM-Cl (9.9 mL, 86.8 mmol) were added. The reaction was stirred at 90 °C for 2 h. The solution was evaporated under reduced pressure and 50 mL of water added. The solution was extracted with CH₂Cl₂, then the organic layer evaporated under reduced pressure. The residue was recrystallized in cyclohexane. Yield 92%. Mp 97–98 °C. IR 1692, 1600. ¹H NMR (CDCl₃) δ =3.30 (s, 3H), 3.50 (m, 2H), 3.70 (m, 2H), 5.50 (s, 2H), 7.15 (d, 1H, *J*=8.30 Hz), 7.45 (dd, 1H, *J*=8.30 Hz, *J*=1.50 Hz), 7.55 (d, 1H, *J*=1.50 Hz).

4.1.20. 6-Tributyltin-3-methylethoxymethyl-2(*3H*)-**benzothiazolinone** (**13**). To a mixture of 6-bromo-3-methylethoxymethyl-2(*3H*)-benzothiazolone (**12**) (5 mmol) in toluene (20 mL) under argon, tetrakis(triphenyl phosphine) palladium (0.5 mmol) and bis(tributyltin) (10 mmol) were added. The reaction was refluxed for 16 h. The solution was evaporated under reduced pressure. The oily residue was purified by flash column chromatography with petroleum ether/EtOAc (9.5/0.5) to give an oily product. Yield 63%. IR 1692, 1605. ¹HNMR (CDCl₃): δ =0.90 (t, 9H, *J*=5.90 Hz), 1.10 (t, 6H, *J*=6.10 Hz), 1.35 (m, 6H), 1.55 (m, 6H), 3.35 (s, 3H), 3.55 (m, 2H), 3.75 (m, 2H), 5.45

(s, 2H), 7.30 (d, 1H, J=7.90 Hz), 7.40 (dd, 1H, J=7.90 Hz, J=1.05 Hz), 7.50 (s, 1H).

4.1.21. 6-Benzoyl-3-methylethoxymethyl-2(*3H*)-**benzo-thiazolone (14).** 6-Tributylstannic-3-methylethoxymethyl-2(*3H*)-benzothia-zolone (**13**) (1.9 mmol) in toluene (10 mL) was placed under argon, dichlorobis(triphenylphosphine) palladium (0.18 mmol) and benzoylchloride (2.8 mmol) were added. The reaction was refluxed for 16 h. The solution was evaporated under reduced pressure. The residue was purified by flash column chromatography with CH₂Cl₂/EtOAc (9/1) and recrystallized in cyclohexane. Yield 86%. Mp 101–102 °C; IR 1696, 1649. ¹HNMR (CDCl₃): δ =3.35 (s, 3H), 3.50 (m, 2H), 3.75 (m, 2H), 5.50 (s, 2H), 7.40 (d, 1H, *J*=8.70 Hz), 7.50 (m, 2H), 7.60 (m, 1H), 7.80 (m, 2H), 7.85 (dd, 1H, *J*=8.70 Hz, *J*=1.10 Hz), 8.00 (d, 1H, *J*=1.10 Hz).

References and notes

- Diouf, O.; Carato, P.; Depreux, P.; Bonte, J. P.; Caignard, D. H.; Guardiola-Lemaitre, B.; Rettori, M. C.; Belzung, C.; Lesieur, D. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 2579–2584.
- Diouf, O.; Carato, P.; Lesieur, I.; Rettori, M. C.; Caignard, D. H. Eur. J. Med. Chem. 1999, 34, 69–73.
- Carato, P.; Bonte, J. P.; Lesieur, D.; Depreux, P.; Caignard, D. H.; Millan, M.; Newman-Tancredi, A.; Renard, P.; Rettori, M. C. Eur. Patent Chem. Abstr., 1998, P4662x.
- Carato, P.; Depreux, P.; Lesieur, D.; Millan, M.; Newman-Tancredi, A.; Rettori, M. C.; Caignard, D. H. *Drug Des. Disc.* 2000, 17, 173.
- Lesieur, D.; Delmas, E.; Yous, S.; Depreux, P.; Guillaumet, G.; Dacquet, C.; Levens, N.; Boutin, J.; Bennejean, C.; Renard, P. French Patent 00-01289, 2000.
- Lesieur, D.; Blanc-Delmas, E.; Bennejean, C.; Chavatte, P.; Guillaumet, G.; Dacquet, C.; Levens, N.; Boutin, J.; Renard, P. French Patent 01-12205, 2001.
- Bonte, J. P.; Lesieur, D.; Lespagnol, Ch.; Plat, M.; Cazin, J. C.; Cazin, M. Eur. J. Med. Chem. 1974, 9, 491–496.
- Kanyonyo, M. R.; Ucar, H.; Isa, M.; Carato, P.; Lesieur, D.; Renard, P.; Poupaert, J. H. *Bull. Soc. Chim. Belg.* **1996**, *105*, 17–22.
- 9. Liacha, M.; Yous, S.; Depreux, P.; Poupaert, J. H.; Lesieur, D. *Heterocycles* **1999**, *51*, 1929–1944.
- Moussavi, Z.; Depreux, P.; Lesieur, I.; Sauzieres, J. *Hetero-cycles* 1991, 32, 2119–2125.
- Depreux, P.; Moussavi, Z.; Lesieur, D. Synth. Commun. 1992, 22, 1541–1545.
- Baker, S. R.; Parsons, A. F.; Wilson, M. *Tetrahedron Lett.* 1998, 39, 331–332.
- 13. Yasuhara, A.; Sakamoto, T. *Tetrahedron Lett.* **1998**, *39*, 595–596.
- Routier, S.; Saugé, L.; Ayerbe, N.; Coudert, G.; Mérour, J. Y. *Tetrahedron Lett.* **2002**, *43*, 589–591.
- 15. D'Amico, J. J.; Bollinger, F. G.; Freeman, J. F. J. Heterocycl. *Chem.* **1988**, 25, 1503–1509.
- Yous, S.; Poupaert, J. H.; Lesieur, I.; Depreux, P.; Lesieur, D. J. Org. Chem. 1994, 59, 1574–1576.