Determination of the Maturity and Functionality of Tumor Vasculature by MRI: Correlation Between BOLD-MRI and DCE-MRI Using P792 in Experimental Fibrosarcoma Tumors

Christine Baudelet,1,2 Gregory O. Cron,1 and Bernard Gallez1,2*

Using hypercapnia and carbogen as functional markers of vessel maturation and function, we compared blood oxygen level-dependent (BOLD) contrast with standard dynamic contrast-enhanced (DCE)-MRI quantitative parameters in murine fibrosarcoma. Our results show that there was no correlation between vessel maturity and contrast-agent uptake rate (Ktrans) or contrast agent efflux rate (ktrans). In addition, DCE-MRI provided higher estimates of the fraction of functional tumor compared to BOLD-MRI. The two putative markers of regional vascular density, i.e., the magnitude of BOLD signal change during carbogen challenge (VF) and the fractional plasma volume found by DCE-MRI (Vp), were only weakly correlated (r² = 0.02–0.14). Furthermore, VF showed no correlation with Ktrans.

A positive correlation was observed (r² = 0.75) between mean tumor VF and ktrans, but only when averaged over the whole tumor (which includes tumor regions completely unperfused by the gadolinium [Gd] contrast agent). This would merely reveal a relationship between perfusion status and the capacity to respond to carbogen breathing. In conclusion, characterizations of tumor microvasculature imaging using BOLD-MRI and DCE-MRI appear to be largely complementary, given the weak correlations between their corresponding derived parameters. Magn Reson Med 56:1041–1049 (2006). © 2006 Wiley-Liss, Inc.

Key words: tumor; DCE-MRI; BOLD-MRI; carbogen; vessel maturation; vessel permeability

Both blood oxygenation level-dependent (BOLD) (1) MRI and dynamic contrast enhanced (DCE) MRI have emerged as useful techniques for noninvasive imaging of tumor vasculature (2,3). BOLD-MRI has been used to study tumor vascular growth (4), hemodynamic changes in response to treatments (5–12), acute hypoxia (13), vessel maturation (14–17), and functional status of the vascular bed (14,15,18,19). DCE-MRI also provides important information regarding tumor function and anatomy. Parameters such as blood flow, capillary permeability, interstitial space, and blood volume can be determined by analyzing the kinetics of contrast-media uptake and wash-out (3,20,21).

Assessment of vessel maturation and function with BOLD- or DCE-MRI is an approach whose utility for cancer investigations is well recognized. However, few studies have examined these two techniques simultaneously on the same subject. Thus, our understanding of mechanisms that may relate BOLD- and DCE-MRI remains relatively underdeveloped. Among the few investigators who have focused on this issue, Rijpkema et al. (22) compared BOLD-MRI (response to 98%O2/2%CO2 gas) and DCE-MRI in meningioma patients. In their study, changes in T2* were found to correlate inversely with the wash-out rate of the Gd contrast agent. In two other papers, Peller et al. (23) and Jiang et al. (24) found no relationship between BOLD- and DCE-MRI. However, the latter two studies employed semi-quantitative DCE-MRI analyses instead of pharmacokinetic modeling. Although the reported parameters (maximum rate of enhancement and peak enhancement) may be related to physiological parameters, their lack of clear physiological significance could make their interpretation difficult (25).

In this study we compared BOLD-MRI measurement of vessel maturation (using hypercapnia, i.e., elevated levels of CO2) and BOLD-MRI measurement of vessel functionality (using carbogen breathing, i.e., elevated levels of O2 and CO2) with DCE-MRI using standardized pharmacokinetic quantities (25).

DCE-MRI measurement of uptake and wash-out of a contrast agent can help to characterize vasculature during the neoangiogenesis process (20). In this study we assessed how these parameters correlated with BOLD-MRI measurements of neovascular maturation and function. Furthermore, we assessed regional tumor blood volume using DCE-MRI, by estimating the fractional plasma volume. We used BOLD-MRI to obtain information about the regional blood volume by analyzing the magnitude of BOLD changes during carbogen breathing (26). We also compared both markers of vascular density.

MATERIALS AND METHODS

Animal Model

Syngeneic FSA-II fibrosarcomas were inoculated into the hind leg muscle of male C3H/HeOuJco mice. MRI measurements were performed when tumors reached 8 ± 1 mm in diameter (8–9 days later). FSA-II tumors grow rapidly and are characterized by high vascular density.
heterogeneous distribution of functional vasculature, and a poor degree of vessel maturation (27). The mice were anesthetized with isoflurane 1.2% in air administered with a face mask. Anesthetized mice were placed prone and were immobilized with adhesive tape. Warm air was flushed into the magnet to maintain the body temperature at 37°C.

MRI

MRI was performed with a 4.7-Tesla (200 MHz, 1H) 40-cm inner-diameter bore system (Bruker Biospec, Ettlingen, Germany). The mice were positioned into a 70-mm inner-diameter birdcage radiofrequency (RF) coil. T2*-weighted (T2w) anatomical images were acquired using a fast spin-echo (FSE) sequence (repetition time (TR) = 200 ms, echo time (TE) = 40 ms, flip angle = 90°, matrix = 64 × 64, FOV = 4 cm, receiver bandwidth = 25 kHz, resulting in an acquisition time of 2.56 s per scan. A 1.6-mm-thick slice was prescribed through the tumor center and was imaged first with BOLD-MRI and then with DCE-MRI (see Fig. 1).

BOLD-MRI

For BOLD-MRI we employed a T2*w gradient-echo (GRE) sequence with the following parameters: TR = 200 ms, TE = 18 ms, flip angle = 45°, receiver bandwidth = 12.5 kHz, 64 phase- and frequency-encode steps, linear encoding order, 4 cm field of view (FOV), two averages, and 25.6 s/image. A run of 140 sequential images was acquired. Maturation and functionality of the tumor vasculature were determined from the GRE images acquired during inhalation of air (first 20 scans), air containing 5% CO2 (next 30 scans), air again (30 scans), carbogen (95% O2, 5% CO2, 30 scans), and finally air again (last 20 scans; Fig. 1, left schematic).

DCE-MRI

T1w GRE images were obtained with the following parameters: TR = 40 ms, TE = 4.9 ms, slice thickness = 1.6 mm, flip angle = 90°, matrix = 64 × 64, FOV = 4 cm, receiver bandwidth = 25 kHz, resulting in an acquisition time of 2.56 s per scan. The T1w images were of high quality with uniform signal intensity (SI) and contrast. The RF excitation field was assumed to be homogeneous throughout the tumor. The contrast agent was a rapid-clearance blood pool agent, P792 (Vistarem®; Laboratoire Guerbet, Aulnay sous Bois, France). P792 (MW: 6.47 kDa) is a monogado-linum macrocyclic compound based on a Gd-DOTA structure substituted by hydrophilic (dextran) arms. Its R1 relaxivity in 37°C HSA, 4% at 4.7T is 9.0 mM−1s−1. P792 was injected at a dose of 0.042 mmol Gd/kg as recommended by the manufacturer and published studies (28). A proton density-weighted (PDw) image was acquired before DCE-MRI using the GRE sequence described above, but with the following parameters: TR = 8 s, TE = 4.9 ms, number of averages (NA) = 2. The DCE-MRI study was performed using the following protocol: After 12 baseline images were acquired, P792 was administered intravenously within 2 s (50 µl/40 g mouse) and the enhancement kinetics were continuously monitored for 8 min (200 total scans). This allowed us to sample the SI curve often enough to track the fast rise in tissue enhancement for viable tumor following bolus influx. Immediately after this, a slower DCE data set was acquired to monitor the washout of the contrast agent. For this second set, 60 scans were acquired at a temporal resolution of 60 s (24 averages, 1 hr total).

Data Analysis

MRI data were analyzed using in-house-developed programs written in Interactive Data Language (RSI, Boulder, CO, USA). MRI raw data were zero-filled and 2D Fourier transformed, resulting in an in-plane resolution of 128 × 128. A region of interest (ROI) encompassing the tumor was drawn manually on the T2w anatomical image. Each voxel in this ROI was subsequently analyzed for both GRE images acquired during inhalation of air (first 20 scans), air containing 5% CO2 (next 30 scans), air again (30 scans), carbogen (95% O2, 5% CO2, 30 scans), and finally air again (last 20 scans; Fig. 1, left schematic).

Vessel Functionality and Vessel Maturation Maps

By means of statistical parametric mapping, we generated vascular functional and vascular maturation maps. Image regression analysis was performed using the general linear model (GLM) approach (29). The hemodynamic response under gas-mixture breathing was found to be modeled best by a ramped boxcar (gradual linear increase or decrease for four scans at each end of the boxcar), as opposed to a simple rectangular boxcar function. A set of discrete cosine functions (N = 2) was also included in the design matrix to model low-frequency confounds. Appropriate contrast weights were used to test the null hypothesis of no change in SI during inhalation of CO2 or carbogen, which corresponds to zero amplitude of the boxcar waveform (the significance level α was set to 0.01). Voxels that showed no significant change in SI during carbogen breathing were excluded from further statistical analysis. To assess the maturity and functionality of vessels, we used the VD and VF parameters, defined as the negative of
the change in $1/T_2^* _w$ induced by hypercapnia (breathing elevated levels of CO_2) or carbogen breathing, respectively. The parameter VD relates thus to vessel maturity, whereas VF relates to vessel functionality. The VD and VF depend on the changes in $T_2^* _w$ signal (as estimated using the regression analysis) and are calculated as follows (17):

$$VD \ or \ VF = -\Delta R_2^* = \ln (SI_{pre}/(SI_{pre} + \Delta SI))/TE,$$

where SI_{pre} is the SI during normal-air breathing, ΔSI is the change in SI induced by CO_2 or carbogen breathing (when found statistically significant), and ΔR_2^* is the induced change in $1/T_2^*$. ΔR_2^* is a parameter that is proportional to the change in deoxyhemoglobin content, independently of native tissue T_2^* (in contrast to ΔT_2^*). VD and VF are thus also independent of native tissue T_2^*. Positive values are related to a decrease in deoxyHb content, e.g., when blood vessel oxygenation improves. VD was only estimated when VF was found to be significant. Because carbogen has a 5% CO_2 component, response to hypercapnia (5% CO_2) was considered to be a repeated event when carbogen breathing, respectively.

The parameters V_D and V_F are impermeable to the contrast agent. However, in practice, occur in the case of voxels containing blood vessels that are impermeable to the contrast agent. Despite this, the fraction of perfused tissue was therefore defined as the number of voxels with statistical significance for V_p and K_{trans} divided by the total number of voxels.

We analyzed the total tumor ROI (which was drawn on the $T_2^* _w$ anatomical image) on a voxel-by-voxel basis to obtain parametric maps. Voxels that showed either no signal enhancement or a linear increase of SI were excluded from the analysis. This was achieved by identifying voxels with statistically significant variations in $T_2^* _w$ SI using a power spectrum analysis. Using cluster analysis (8), voxels for which typical signal enhancement curves were observed were then selected for pharmacokinetic analysis. Contrast-agent concentration as a function of time after P792 injection ($C(t)$) was estimated using the following equation:

$$C(t) = \frac{\exp(-t/\tau)}{TR/\tau} \ln[(1 - S(t)/S_{0pd})/(1 - S(t)/S_{0pd})],$$

where TR is the repetition time of the $T_2^* _w$ image, τ is the relaxivity of the contrast agent (9.0 mM$^{-1}$s$^{-1}$), S_{0PD} is the preinjection SI for the $T_2^* _w$ image, S_{0pg} is the preinjection SI for the PDw image, and $S(t)$ is the signal as a function of time after injection for the $T_2^* _w$ image. The tracer concentration changes were fitted to a two-compartment pharmacokinetic model as previously described (13,25).

The following equation describes the tissue concentration as a function of time:

$$C(t > t0) = K_{kin} \cdot A_0 \cdot \exp\left(-\frac{K_{trans} \cdot A_0}{V_p} \cdot t\right) + \frac{K_{trans} \cdot A_0}{V_e} \cdot \exp(-k_e t)$$

where K_{trans} is the influx volume transfer constant (into EES from plasma), K_{trans} is the influx volume transfer constant (from EES back to plasma), V_p is the volume of EES per unit volume of tissue, and V_e is the blood plasma volume per unit volume of tissue. K_{trans} cannot be estimated separately, so only k_{ep}, the ratio K_{trans}/V_p, is reported. k_{ep} is the fractional rate of efflux from the interstitial space back to the blood, and k_{ep} is reported instead of k_{ep}.

Between-Tumor Analysis

For each tumor voxel we calculated a set of BOLD and DCE parameters (values were set to 0 when a parameter was...
found to be nonsignificant). Whole-tumor averaged values of parameters were computed from these data. Correlations between these mean parameters for the seven tumors were tested for significance.

RESULTS

Relationship Between Hypercapnia-Induced BOLD Response and $K_{\text{Trans_in}}$ or k_{ep}

Only 17% ± 2% (mean ± SEM) of tumor voxels responded to hypercapnia, indicating a low percentage of tumor regions containing mature vessels (Figs. 2a and 3a, groups 3 and 4 vs. groups 1 and 2). Of the voxels that did respond to hypercapnia, 78% ± 6% had significant values for $K_{\text{Trans_in}}$ (Figs. 2a and 3a, group 3 vs. group 4). Tumor voxels with no response to hypercapnia and no significant $K_{\text{Trans_in}}$ values represented 20% ± 6% of the tumor (Figs. 2a and 3a, group 1), revealing the necrotic part of the tumor.

We also compared the mean values of $K_{\text{Trans_in}}$ and k_{ep} (only when found to be significant) between hypercapnia-responsive and -nonresponsive vessels (Fig. 2a, groups 2 and 3). No systematic significant difference in mean $K_{\text{Trans_in}}$ values was observed between these two groups, nor was any systematic significant difference in k_{ep} observed (see Fig. 4a and b). $K_{\text{Trans_in}}$ values were higher in tumor than in contralateral muscle (0.034 ± 0.004 vs. 0.011 ± 0.002 min$^{-1}$, whole tumor, and muscle ROIs, $P < .01$, paired t-test). However, k_{ep} values were the same in tumor and muscle (0.031 ± 0.004 and 0.029 ± 0.002 min$^{-1}$, respectively; see also Fig. 4a and b, gray bars = muscle).

We also quantified the correlation between V_D values (magnitude of the BOLD response to hypercapnia) and $K_{\text{Trans_in}}$ or k_{ep}. The whole-tumor averaged analysis revealed a lack of correlation between the mean tumor V_D and mean $K_{\text{Trans_in}}$ values (Fig. 5a, Table 1). V_D and k_{ep} were only weakly correlated ($P = .09$; Fig. 5c, Table 1). In individual tumors, no significant correlations between V_D and $K_{\text{Trans_in}}$ or k_{ep} were observed on a voxel-by-voxel basis (with r^2 ranging in the seven tumors from 0 to 0.11 for $K_{\text{Trans_in}}$ and from 0 to 0.03 for k_{ep}; see Fig. 2, group 3).

Relationship Between Carbogen-Induced BOLD Response and $K_{\text{Trans_in}}$ or k_{ep}

In this tumor model the VFI (fraction of all tumor pixels that responded to carbogen breathing) was 50% ± 4% (mean ± SEM, $N = 7$; Figs. 2b and 3b, groups 3 and 4 vs.
groups 1 and 2). The fraction (percentage) of tumor perfused by the Gd contrast agent was 76% ± 7%, which is significantly higher than the VFI (P < .05, paired t-test).

Of the tumor voxels that responded to carbogen breathing, 78% ± 7% were perfused by the Gd contrast agent (Figs. 2b and 3b, group 3). Of the tumor voxels that did not respond to carbogen breathing, 73% ± 8% were perfused by the Gd contrast agent (Figs. 2b and 3b, group 2). This indicates that carbogen reactivity is a poor discriminant factor for contrast-agent influx. The ratio between the two proportions (also called the relative risk (RR)) was small indeed (RR = 1.06, 95% CI = [1.02, 1.09]). This means that carbogen-responsive voxels were only 1.06 times more likely to also have a contrast-agent influx than carbogen-nonresponsive voxels. We also compared the mean values of K_{Trans}in and k_{ep} (averaged only over significant values) between carbogen-responsive and -nonresponsive vessels. There was no systematic significant difference in K_{Trans}in or k_{ep} for these two groups (Fig. 4c and d).

We also performed a correlation analysis between VF and the K_{Trans}in or k_{ep} parameters. The whole-tumor averaged analysis revealed a lack of correlation between K_{Trans}in values and mean tumor VF (Fig. 5b). However, a significant positive correlation was observed between mean tumor VF and k_{ep} values ($r^2 = 0.75, P = .01$; Fig. 5d). Small values for VF in such tumors were not due to a lack of BOLD signal change during carbogen; rather, there was an equal proportion of negative and positive changes. For example, the mean absolute value of VF for mouse 7 was far from zero (Fig. 5f). Interestingly, the correlation between k_{ep} and VF was improved when the absolute value of VF was considered ($r^2 = 0.81, P = .005$; Fig. 5f). In addition, a significant positive correlation was observed between the VFI (percentage of tumor voxels responding to carbogen) and whole-tumor mean k_{ep} values ($r^2 = 0.66, P = .02$).

In individual tumors, no significant correlations between VF and K_{Trans}in or k_{ep} were observed on a voxel-by-voxel basis (with r^2 ranging in the seven tumors from 0 to 0.07 for K_{Trans}in and from 0 to 0.06 for k_{ep}, Fig. 2b, group 3). This is also demonstrated in the parametric maps in Fig. 6. For example, a lack of correlation between VF and K_{Trans}in is clearly visible in this figure. Zones of high VF values did not overlap with those of high K_{Trans}in values.

Relationship Between Hypercapnia and Carbogen-Induced BOLD Responses

The whole-tumor averaged analysis revealed a positive correlation between the mean VD and mean VF ($r^2 = 0.75$; Table 1). Tumors that demonstrated a mean negative VD were associated with low values for the mean VF (Fig. 5c and d). Similarly, the percentage of hypercapnia-responsive tumor voxels was strongly correlated with the VFI (percentage of carbogen responsive voxels; $r^2 = 0.82, P = .005$).

Relationship Between Carbogen-Induced BOLD Response and V_p

The estimated mean tumor fractional plasma volume as derived from P792 enhancement kinetics (V_p) was about 50% higher than in contralateral muscle tissue (V_p = 0.061 ± 0.005 vs. 0.040 ± 0.003, mean ± SEM, $P < .01$, paired t-test), reflecting the more pronounced vascular development in the tumor tissue. Both VF and V_p represent a measure of vascularity. The VF is determined by the mean perfused vascular fraction, whereas the V_p is related to blood volume (35). The whole-tumor averaged analysis
FIG. 5. Relationships between mean tumor DCE-MRI-derived parameters and VD or VF BOLD-MRI-derived parameters. Linear fit, r^2, and tumor labels are given.

Table 1
Pairwise Correlations Between Whole Tumor Averaged BOLD and DCE Parameters

<table>
<thead>
<tr>
<th>$K_{\text{trans}}^{\text{in}}$</th>
<th>k_{ep}</th>
<th>Vp</th>
<th>VD</th>
<th>VF</th>
<th>$%\text{CO}_2^{+}$</th>
<th>$%\text{CBG}^{+}$</th>
<th>$%\text{DCE}^{+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.62</td>
<td>-0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.13</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+0.00</td>
<td>+0.69</td>
<td>+0.19</td>
<td></td>
<td></td>
<td>+0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.09</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+0.21</td>
<td>+0.86</td>
<td>-0.01</td>
<td>+0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>0.01</td>
<td>0.97</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.09</td>
<td>+0.86</td>
<td>+0.12</td>
<td>+0.77</td>
<td>+0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>0.01</td>
<td>0.79</td>
<td>0.04</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+0.14</td>
<td>+0.81</td>
<td>+0.06</td>
<td>+0.92</td>
<td>+0.95</td>
<td>+0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.76</td>
<td>0.03</td>
<td>0.89</td>
<td>0.003</td>
<td>0.001</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+0.78</td>
<td>+0.51</td>
<td>-0.86</td>
<td>+0.21</td>
<td>+0.43</td>
<td>+0.23</td>
<td>+0.34</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>0.24</td>
<td>0.01</td>
<td>0.64</td>
<td>0.32</td>
<td>0.62</td>
<td>0.23</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Data are Pearson correlation coefficient (calculated for seven tumors). Corresponding P values are italicized. Significant correlations are typed in bold. The $\%\text{CO}_2^{+}$ and $\%\text{CBG}^{+}$ parameters are the percentage of hypercapnia and carbogen responsive tumor voxels respectively. The $\%\text{DCE}^{+}$ parameter is the percentage of tumor voxels with contrast agent entry.
revealed no significant correlation between the mean VF and mean V_p, or between the mean VD and mean V_p (see Table 1). There was a positive correlation between mean tumor V_p and mean significant k_{ep} values ($r^2 = 0.78, P = 0.009$), but no correlation between the mean tumor V_p and mean tumor k_{ep} or K_{Trans}. In addition, the mean tumor V_p and the fraction of perfused (i.e., with contrast-agent entry) tumor were inversely correlated ($r^2 = 0.74, P = 0.01$; Table 1). On a voxel-by-voxel basis, a positive correlation was found consistently (6/7 tumors) between VF and V_p, but the degree to which parameters were associated was low (individual $r^2 = 0.02–0.14$).

DISCUSSION

In the present study we compared DCE-MRI parameters (macromolecular Gd contrast agent) with BOLD-derived parameters (during hypercapnia and carbogen) representing vessel maturation and function. In this work we attempted to answer the following questions:

Is Vessel Maturity As Revealed by BOLD-MRI Correlated With Contrast Agent Uptake (or Efflux)?

In this study the vasculature in FSa-II fibrosarcoma tumor was revealed to be largely immature. This is consistent with previously obtained immunohistological data (27). Most (78%) of the mature tumor regions showed contrast agent influx, which is consistent with the concept that only functional vessels will demonstrate BOLD contrast change upon hypercapnia.

The physiologic interpretation for K_{Trans} is that it reflects capillary permeability, assuming that blood flow is sufficient (25). The classic view concerning tumor vasculature is that immature vessels are typically hyperpermeable (30). In this study we observed that normal muscle, which is assumed to be made up of mature vessels, exhibited lower values of K_{Trans} (slower and poorer contrast enhancement) than in intramuscularly implanted FSa tumors. This would reflect the selective hyperpermeability of tumor vessels. We also compared K_{Trans} (significant values only) between mature and immature tumor regions. However, there was no systematic evidence of higher values of K_{Trans} for immature vs. mature regions in the tumor tissue. Since P792 is an intermediate-sized contrast agent (∼10× larger than Gd-DTPA but ∼10× smaller than albumin-Gd-DTPA), it is still unclear whether the pharmacokinetics of this agent are governed by permeability or by blood flow. The use of a macromolecular contrast agent, such as albumin Gd-DTPA, may have better differentiated the two tumor regions (31). However, there is also evidence in the literature that there can be a lack of correlation between maturation and reduced permeability. For example, Gilad et al. (16) observed that a third of all mature vessels were hyperpermeable to albumin Gd-DTPA in the rim of human ovarian carcinoma cells.

We also quantified the relationship between VD (intensity of BOLD response to hypercapnia) and k_{ep} or K_{Trans}. There was no evidence of a strong correlation between these parameters, apart from a nearly significant positive correlation between mean VD and k_{ep} across tumors. Correlations were stronger when VF (the intensity of the BOLD response to carbogen) and k_{ep} were compared, as discussed below.

The lack of evidence of correlation with contrast-media uptake may also be attributed to the nonspecificity of the BOLD-MRI approach. Indeed, a signal change may be observed distal to the site of vessel tone modulation as the result of serial redistribution of blood flow in the tumor. However, the extent of this phenomenon should not be critical for the evaluation of maturity, since we still observed a small fraction of tumor tissue with significant VD, which corroborated our previous histological findings (27). Furthermore, if the same phenomenon occurred during carbogen inhalation, it would not provide a biased measurement of functionality. Estimation of vessel functionality would in fact be even more correlated to the
DCE-MRI measurement. Indeed, the unspecific redistribution of blood flow would occur exclusively in perfused vessels, with or without erythrocytes, but at least with plasma (also allowing contrast-agent arrival). As discussed further below, we observed that DCE-MRI marked significantly more perfused vessels compared to BOLD-MRI. This suggests that unspecific redistribution does not play an essential role in evaluations of functionality using the BOLD approach.

How Is Vascular Function, As Assessed Using BOLD-MRI, Correlated With Contrast Agent Uptake?

Assessment of the BOLD response to carbogen breathing has proved to be useful for probing tumor vascular function (18,26,32,33). Tumor vascular function can also be assessed with the use of DCE-MRI. In this study we observed that DCE-MRI systematically gave higher estimates of the percentage of functional tumor region than BOLD-MRI. The discrepancy between the two techniques may be explained by the poor intrinsic contrast sensitivity of BOLD-MRI in tumor vessels with low hematocrit, relative to DCE-MRI (the contrast-agent influx in the blood stream of the vessel is unaffected by hematocrit) (18). Another possible explanation relates to the generally lower sensitivity of BOLD-MRI. Indeed, each technique is limited by its detection limit. For example, in our study the lowest significant value for VF that the method could detect among tumor voxels was 1.2 s⁻¹, whereas for \(V_p \) it was 0.99%, and for \(K^{\text{trans}} \), it was 0.002 min⁻¹. Conventional GRE BOLD imaging with a long TE or train of TEs may not be sensitive enough to detect all changes in \(T_2^* \) that reflect changes in blood oxygenation. al Hallaq et al. (34) and Foxley et al. (35) demonstrated that a loss of sensitivity is observed when the water resonance does not behave as a homogeneous broadened Lorentzian line. With high-resolution echo-planar spectroscopic imaging (EPSI), the analysis of changes in individual Fourier components of the water resonance during carbogen breathing could reveal BOLD changes that were missed by conventional imaging. It was beyond the scope of this study to determine whether BOLD imaging using EPSI correlates better with DCE-MRI, and this issue warrants further investigation.

How Is the Magnitude of the BOLD Signal Change During Carbogen Challenge Correlated With Contrast Agent Uptake (or Efflux) and Plasma Volume?

The BOLD response to carbogen depends on several parameters, such as the basal blood oxygen level, vessel density, and hematocrit, all of which are related to the level of tissue hypoxia. A recent paper dealt with the dominant role of regional blood vessel density in determining the size of the BOLD response (26). Accordingly, we found it reasonable to postulate that in tumor regions with high intensity of BOLD signal changes, higher values of \(K^{\text{trans}} \) or \(V_p \) would be observed, presuming that in such regions sustained angiogenesis would have occurred. However, in this study we did not clearly observe any such relationships. The lack of evidence of correlation was not due to noisy data. Figure 6 clearly shows that the spatial distribution of zones of high VF values (associated with high SNR) did not overlap with zones of high \(K^{\text{trans}} \) values (i.e., voxels with large contrast enhancement and hence a high SNR).

Intratumoral correlations between VF and \(V_p \) were very weak (at most, 14% of the variance of VF could be explained by \(V_p \)). Errors in \(V_p \) estimation could have accounted for the lack of correlation with VF. However, the Gd contrast agent we used (P792) can provide reliable assessment of blood plasma volume due to lower transendothelial diffusion (compared to Gd-DTPA) (31,36). Intrinsically, VF and \(V_p \) are related to blood volume. However, VF is also affected by blood oxygenation change and hematocrit. Furthermore, conversion of \(V_p \) to blood volume requires hematocrit data. Discrepancies between local hematocrit and fractional plasma volume in tumor microvessels could account for the poor relationship between VF and \(V_p \) (37).

Interestingly, VF and \(k_{up} \) correlated only when averaged over the whole tumor. Thus, tumors that showed lower values of \(k_{up} \) were associated with limited BOLD carbogen responsiveness. The weak net global BOLD response in such tumors was due to the presence of negative BOLD changes during carbogen breathing and hypercapnia. It has been demonstrated that positive changes observed during hypercapnia are due to a decrease in apparent \(T_2^* \) via the inflow effect (increase in tissue perfusion) (14). Positive changes during carbogen breathing are due to both increased inflow (\(T_1^* \) effect) and increased blood oxygenation (increase in \(R_2^* \)) (10). Although negative changes during a gas-breathing challenge were previously reported by us as well as others (8,11,38), our understanding of this phenomenon and its relevance is still currently limited. Areas of reduced signal were observed following a local increase in blood volume. Vasodilatory effects of \(CO_2 \) can result in a net increase in \(R_2^* \). Negative changes may also result from the so-called “steal effect,” which occurs when a local large blood flow increase “steals” blood flow from other areas of the tumor (39).

The positive correlation between VF and \(k_{up} \), we observed seems to contradict results reported by Rijpkema et al. (22), who reported that changes in \(T_2^* \) correlated inversely with \(k_{wp} \). In their study, mean \(k_{wp} \) values were computed for Gd-DTPA-enhancing pixels only. When \(k_{wp} \) is estimated from an ROI encompassing a whole tumor, a small value can mean that either the tumor-perfused fraction is small (i.e., many voxels with a value of zero for \(k_{wp} \)) or there is a reduction in efflux (low values for \(k_{wp} \) in perfused tumor regions). It is not possible to discriminate between the two phenomena. The fact that in our study there was no correlation between the mean \(k_{wp} \) over perfused tumor regions and the mean VF over carbogen-responsive or mean tumor (\(r = +0.30, P = .50; r = +0.33, P = .47 \), respectively) implies that the inclusion of tumor pixels with no blood flow (by using a whole-tumor ROI) created an artifactual correlation between mean tumor \(k_{wp} \) and VF. Such a correlation merely demonstrates that the less the tumor is perfused (in terms of percentage of the perfused tumor area), the less it has the capacity to respond to carbogen breathing (in terms of an increase in the BOLD signal).

In conclusion, characterizations of tumor microvasculature using BOLD- and DCE-MRI techniques appear to be largely complementary, given the weak correlations between their corresponding derived parameters (VD and VF
for BOLD-MRI, and V_p, K_{trans}, K_{ep}, and k_{ep} for DCE-MRI). Their relevance in terms of predicting treatment outcome and prognosis remain unclear and should be investigated in future studies.

REFERENCES

