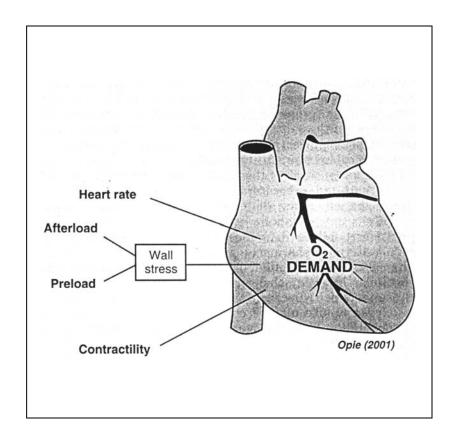
Pharmacologie cardiovasculaire: 3. Dérivés nitrés

Paul M. Tulkens, Dr Med. Lic. Sc. Biomed., Agr. Ens. Sup.

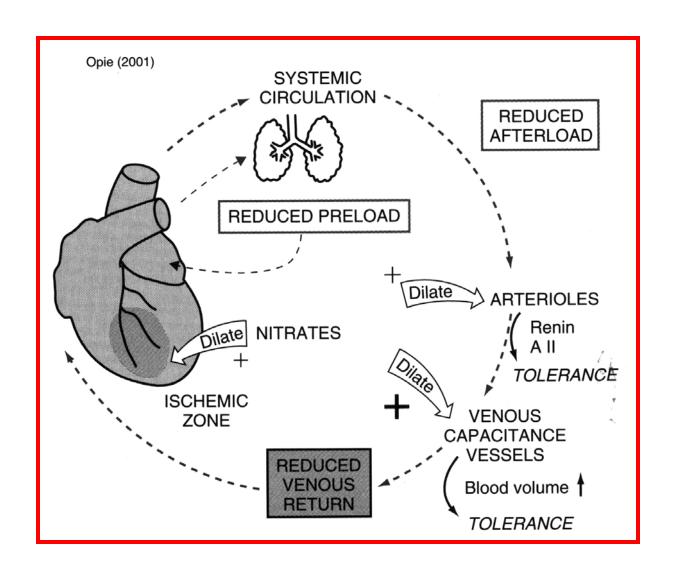
Faculté de pharmacie et sciences biomédicales Faculté de médecine et de médecine dentaire Université catholique de Louvain Bruxelles, Belgique



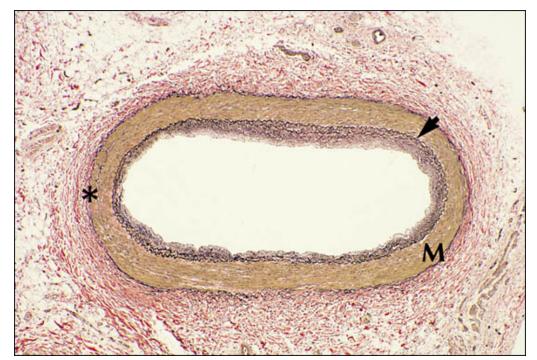
Université d'Abomey-Calavi Cotonou, Bénin

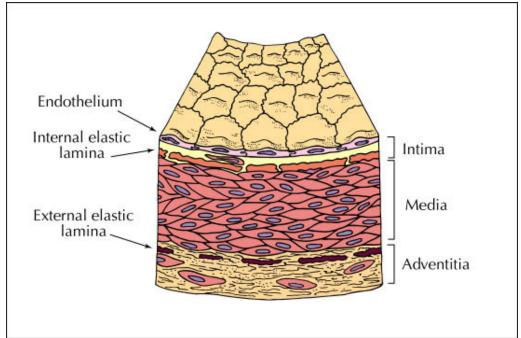
Ces diapositives sont reprises des cours donnés à l'Université catholique de Louvain par le Prof. O. Feron (RSA par P. Tulkens avec l'aide des Prof. Poupaert et Depovere)

Physiologie


Pré-charge (Preload)

volume de sang que contient le ventricule en fin de diastole (dép. de la pression du retour veineux)


Post-charge (Afterload)

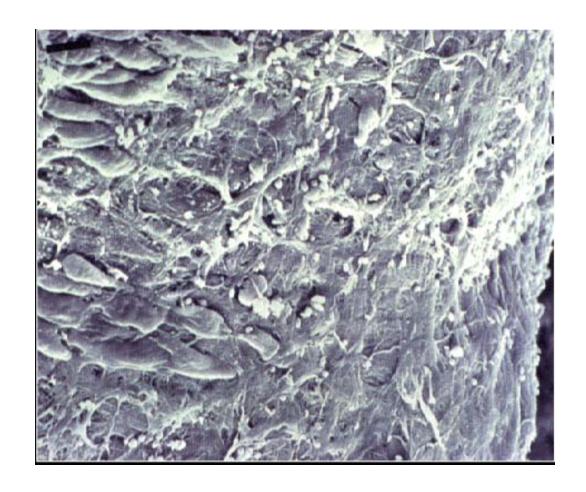

= charge correspondant à
l'impédance d'entrée de l'aorte
(dép. de la résistance périph.
et de la compliance de l'aorte)

DERIVES NITRES ET DONNEURS DE NO

Introduction

4

« L'endothélium vasculaire est un organe ... »

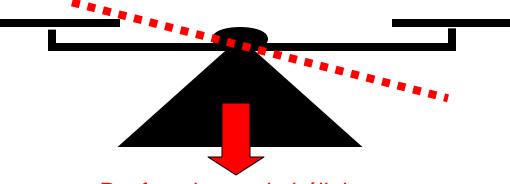

1 X 10¹² cellules

1.5 - 1.8 kg

4-6 terrains de tennis

Principales fonctions de l'endothélium:

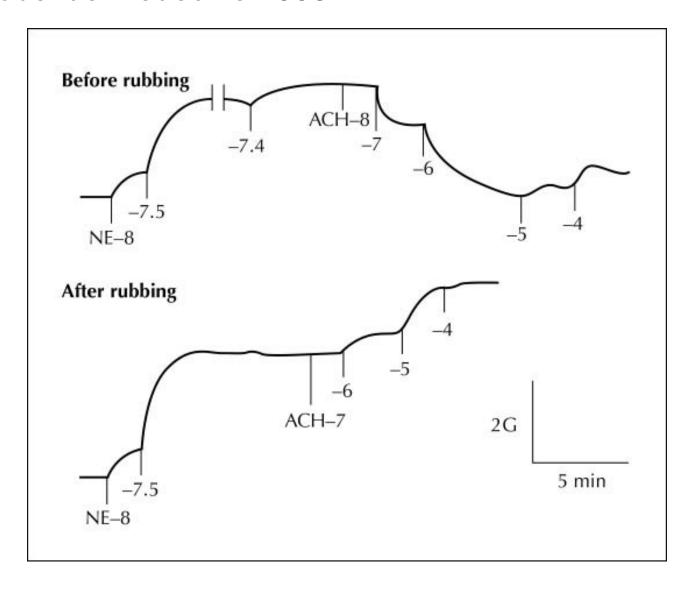
- Tonus vasculaire
- Perméabilité vasculaire
- Adhésion leuco/PLT
- Remodelling vasculaire

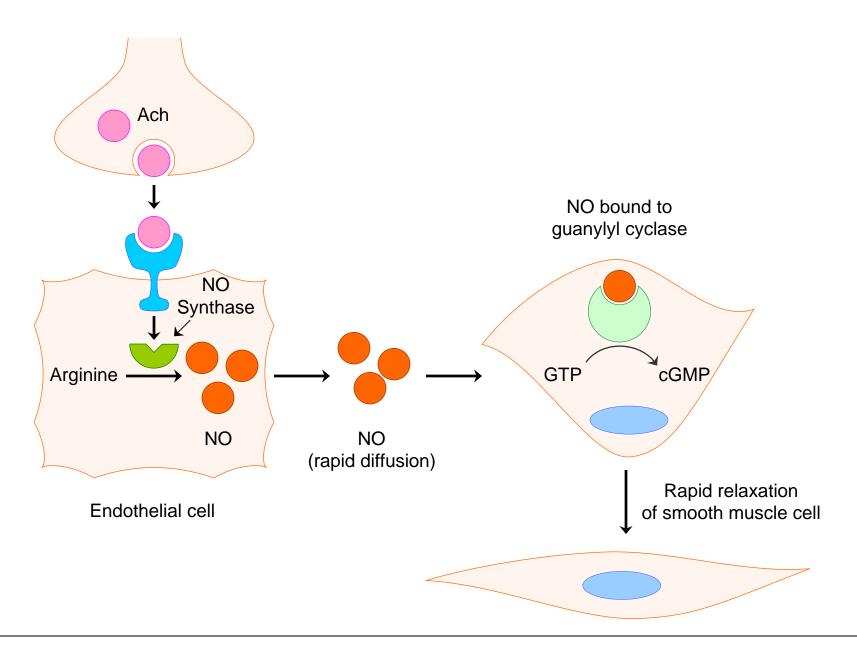

assurées par un équilibre entre différents médiateurs

Vasodilatateurs

- NO (Monoxyde d'azote)
- EDHF (facteur hyperpolarisant)
- Prostacyclines (PGI₂),...

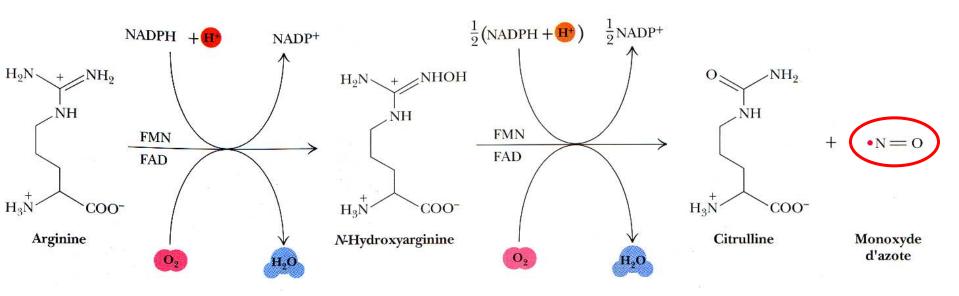
Vasoconstricteurs


- Endothéline
- Angiotensine II
- Thromboxane A₂, ...

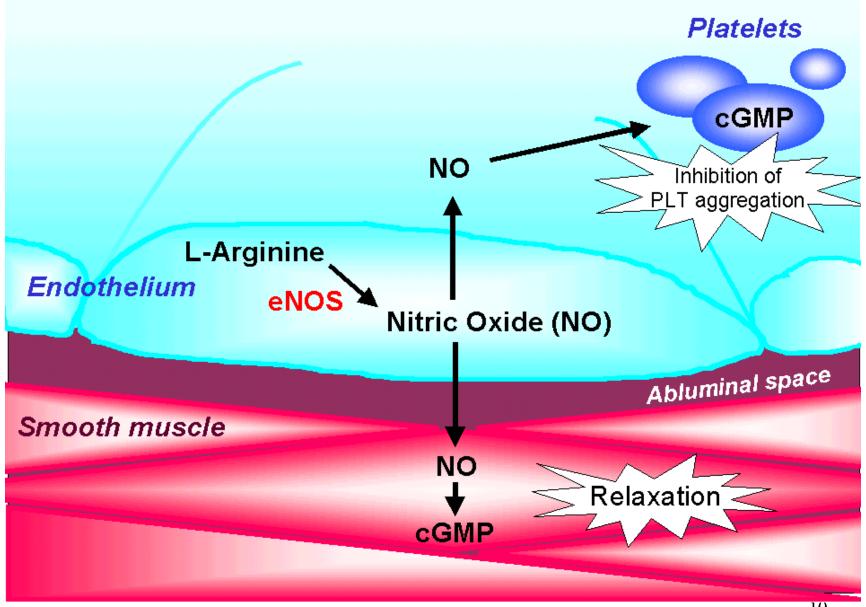

Dysfonction endothéliale

associée à athérosclérose, hypertension, diabète, ...

Prix Nobel de Médecine 1998



NO et relaxation musculaire des vaisseaux

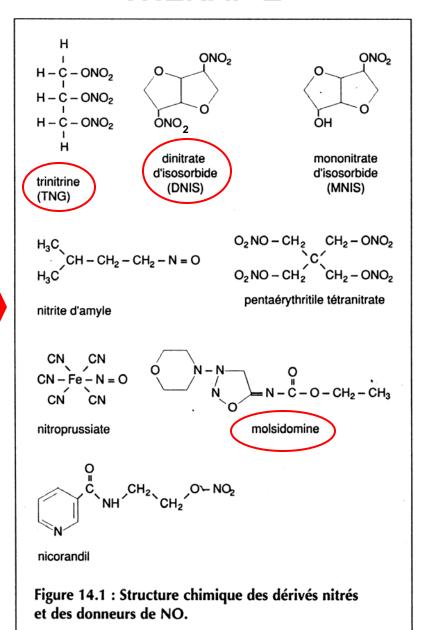

Formation du NO

Production du NO

Garrett and Grisham, Biochimie, De Boeck, 2000, pg 1160

Introduction

10


hysiologie-Molécules

endothélium NO. A_{II}, Nadr, ET Ca2+ **GUANYLATE CYCLASE** phospholipase C Ca2+ **cGMP** PIP₂ DAG désensib.prot. contractiles • au calcium (5) **PKG** Ca2+ Ca2+ réticulum muscle lisse

Figure 14.4: Mécanismes présumés des effets relaxants musculaires lisses du GMPc et de la PKG.

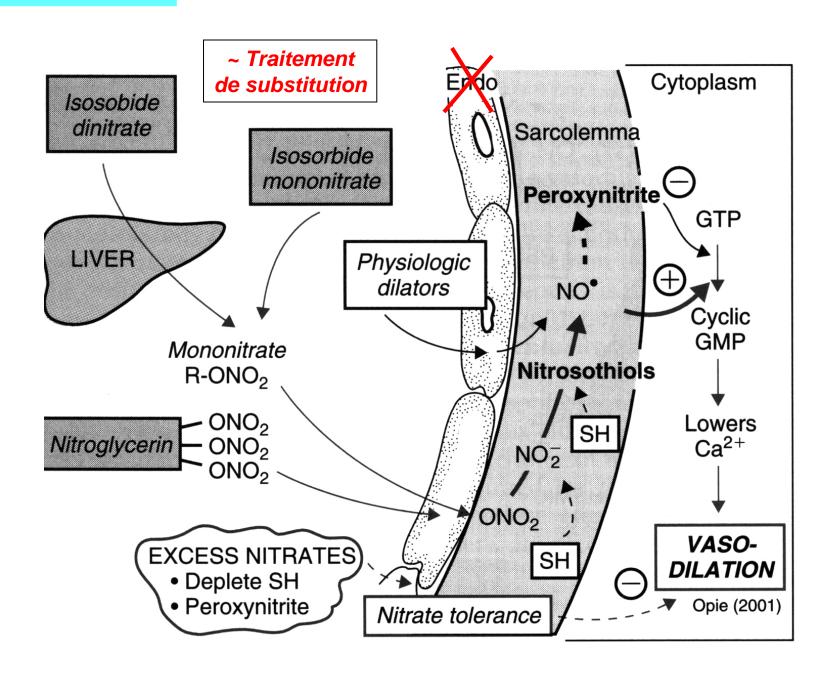
1, stimulation de l'extrusion de Ca²⁺ vers le milieu extracellulaire; 2, stimulation du recaptage de Ca²⁺ par le réticulum; 3, inhibition de la libération de Ca²⁺ à partir des réserves du réticulum, probablement par inhibition de la réponse calcique induite par l'IP₃; 4, inhibition de la production d'IP₃ par inhibition de la phospholipase C ou de la voie de transduction du signal vasoconstricteur conduisant à l'activation de la phospholipase C.


THERAPIE

PHYSIOLOGIE

Molécules

Alfred Nobel
suffered from
angina pectoris
and was
prescribed
nitroglycerine.
In a letter to a
friend he wrote:



"It sounds like the irony of fate that I have been prescribed nitroglycerine internally. They have named it Trinitrin in order not to upset pharmacists and the public.

Your affectionate friend,

A. Nobel"

Mécanismes d'action

Mécanismes d'action

Production de NO par les dérivés nitrés.

Ces composés très liposolubles pénètrent facilement la cellule musculaire lisse vasculaire, où ils subissent une biotransformation conduisant à la production de NO par une série de réactions de réduction probablement enzymatiques et impliquant la formation de nitrosothiols (R-SH + « Nitrés » → R-S-NO).

La nécessité de cette biotransformation peut rendre compte de certaines de leurs propriétés pharmacologiques, en particulier les phénomènes de tolérance et de sélectivité dans leur effet relaxant des gros troncs artériels.

Bien que les artères de ϕ < 100 µm ne se relâchent pas en réponse au TNG,

- dilatation sous l'effet du NO exogène ou suite à l'activation de la NO synthase endogène
- réponse démasquée en présence de L-cystéine ⇒ probable manque de gr. -SH

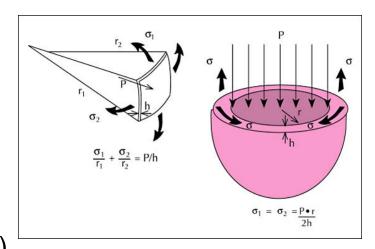

Production de NO par la molsidomine

(Corvaton - 3 prises, Coruno - 1 prise).

Le SIN-1 est le métabolite actif d'une prodrogue (molsidomine) qui libère le NO de façon spontanée en solution. La conversion est réalisée essentiellement par les estérases hépatiques. Il est à noter que la libération de NO s'accompagne également de la production d'anion superoxide qui accélère la dégradation du NO

14

Dérivés nitrés: pourquoi des rapides et des lents ?



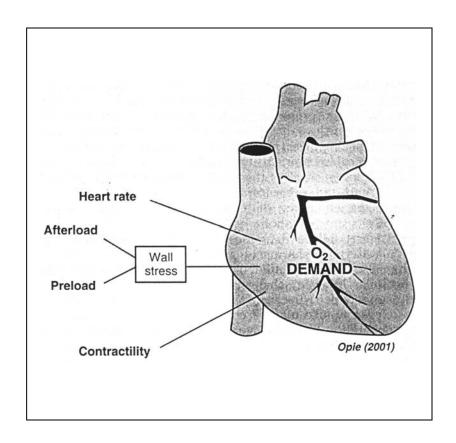
Physiologie

Muscle strié: Contraction caractérisée par la force (tension) développée et la variation de longueur.

Coeur:

- force = pression
- longueur = volume
- travail = pression X volume (loi de Starling)

Besoins en O₂ du muscle cardiaque assurés par les artères coronaires --> si apport en O₂ insuffisant: 'angine de poitrine'


Pour y remédier (correction ou prévention):

- soit décharger le coeur pour ↓ travail
- soit améliorer la perfusion coronaire

Circulation coronaire étroitement dépendante des conditions dans lesquelles travaille le coeur diminuer le travail peut avoir des effets sur la perfusion

Physiologie

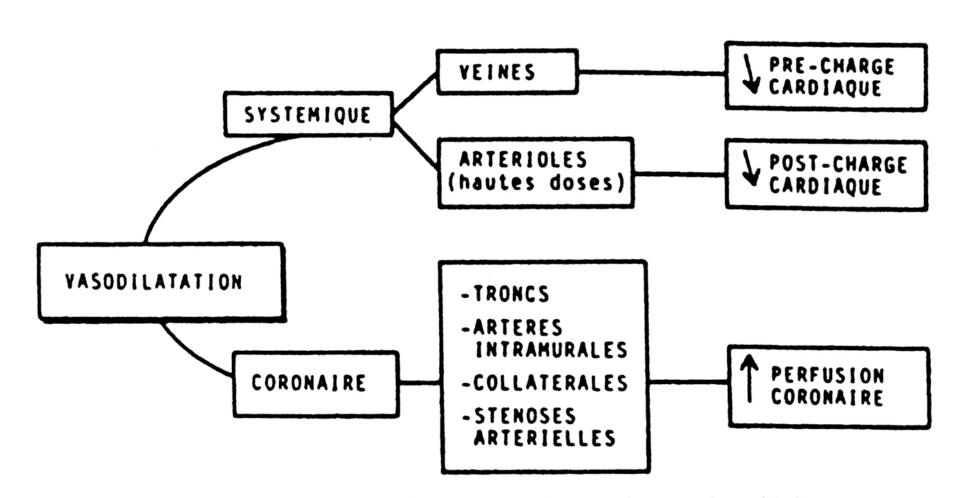
Pré-charge (Preload)

volume de sang que contient le ventricule en fin de diastole (dép. de la pression du retour veineux)

Post-charge (Afterload)

= charge correspondant à
l'impédance d'entrée de l'aorte
(dép. de la résistance périph.
et de la compliance de l'aorte)

ffets pharmacologiques


Effets sur la circulation systémique :

- 1. Aux faibles concentrations thérapeutiques (par ex. admin. sublinguale)
 - vasodilatation veineuse (>> artérielle)
 - → « stockage » du sang veineux (splanchnique et membres inf./sup.)

 - → Upression télédiastolique (stress mécanique) → Upression télédiastolique (stress mécanique)
 - → Ubesoin en O2
 - effets vasodilatateurs artériels locaux au niveau du cou, des méninges et de la face, d'où céphalées et flush
- 2. Aux plus fortes concentrations (par ex. admin. IV)
 - vasodilatation artérielle systémique → ↓ résistance périphérique totale et ↓ pression artérielle → ↓ postcharge → ↓ travail cardiaque
 - → Ubesoin en O2 (mais!! tachycardie réflexe)

Effets sur la circulation coronaire :

- 1. Aux faibles concentrations (pas de changement du débit coronaire total, pas de vol coronaire comme d'autres vasodilatateurs mais redistribution !!)
 - Effet direct : vasodilatation des gros troncs coronaires
 - → effets anti-spastiques + redistribution sg vers les artères collatérales
 - → ↑ apport en O2
 - Effet indirect : ↓ précharge → ↓ pression pariétale intraventriculaire
 - → ↑ perfusion coronaires des zones sous-endocardiques
 - → redistribution vers les territoires ischémiques
 - → ↑ apport en O2
- 2. Aux plus fortes concentrations :
 - vasodilatation des artères coronaires de résistance
 - → ↑ débit coronaire

Sites d'action et effets hémodynamiques des dérivés nitrés.

1. Insuffisance coronaire ou Angor:

- = déséquilibre entre apports sanguins et besoins métaboliques du myocarde
- → Les nitrés agissent via des effets vasodilatateurs directs et indirects
 + amélioration de la balance en O2

Crise angineuse (= « d'effort »):

- Traitement (sublingual) : effet rapide (TNG 1-2 min, DNIS 2-3 min) mais court (TNG 10-15 min, DNIS 1-2h) ; si échec de la 1ère prise dans les 2 min, une seconde prise peut être effectuée ; si résistance persiste : hospitalisation urgente, risque d'infarctus
- Prophylaxie avant toute situation susceptible de déclencher une crise

NB: Stabilité : spray >> comprimé >> comprimé conservé 'sur ouate' ou 'emballé'

Angor stable (= « prévisible »):

Utilisation des dérivés à longue durée d'action (orales) ou des dispositifs transdermiques ; à adapter en fonction des symptômes du patient (généralement angor d'effort diurne; plus rarement prédominance nocturne)

!! Tolérance → respecter une fenêtre thérapeutique quotidienne (par ex. dernière prise dans l'après-midi ou retrait du patch pendant 12h mais attention à l'effet rebond pendant la nuit et au lever; éventuellement, molsidomine pour la nuit) ²¹

Angor spastique :

Indication de choix des dérivés nitrés en monothérapie ou en associations aux antag. calciques ; adapter à l'horaire de survenue souvent nocturne.

Angor instable

(= entre l'angor stable et l'infarctus; svt thrombose non-occlusive):

En milieu hospitalier, fortes doses en IV sous surveillance tensionnelle généralement pendant 48h éventuellement relayées par un traitement oral.

 \rightarrow atténue la douleur (et minimise donc les effets adrénergiques) et lève le spasme surajouté éventuel ; en association avec l'aspirine, l'héparine et les β -bloquants afin d'éviter l'évolution vers l'infarctus.

2. Insuffisance cardiaque:

Insuffisance cardiaque congestive avec oedème pulmonaire aigu

→ via diminution de la pré- et de la postcharge induisant une diminution du travail cardiaque

Utilisation sous forme sublinguale ou IV, effet rapide et important, traitement de 1ère ligne pour l'œdème pulmonaire aigu avec les diurétiques de l'anse (Insuff. cardiaque chronique : nitrés = 2ème choix << IECA)

3. Crise hypertensive

nitroprussiate de sodium sous surveillance clinique

Tolérance et effet rebond

Tolérance aux dérivés nitrés:

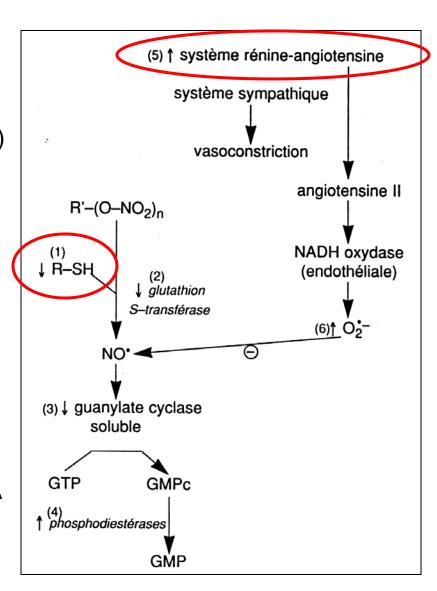
= diminution des effets pharmacologiques lors d'une administration prolongée

<u>Historique:</u> céphalées de début de semaine des ouvriers travaillant dans les usines de production de NG

Plusieurs mécanismes dont la diminution de la biotransformation suite à ↓ cofacteurs R-SH (1) et l'activation réflexe du SRAA (5-6)

<u>Clinique:</u> variable, dépend de la nature de la substance et de sa posologie

→respecter une fenêtre « drug-free »


Effet rebond:

 précipitation des symptômes angoreux à l'arrêt brusque du traitement par les nitrés

<u>Historique:</u> mort subite de certains ouvriers travaillant dans les usines de production de NG lors de congés!!

<u>Mécanisme:</u> Activation non-opposée du SRAA <u>Clinique:</u> symptômes similaires rapportés

→ arrêt progressif des traitements chroniques


Ell et Cl

Effets indésirables (plus souvent bénins et réversibles; pour les éviter, conseiller d'atteindre les doses thérapeutiques par paliers):

- céphalées, bouffées vasomotrices
- hypotension orthostatique (prendre le médicament en position <u>assise</u>; la position <u>debout</u> favorise la syncope et la position <u>couchée</u> augmente le retour veineux et le travail cardiaque)
- -methémoglobinémie (par oxydation du fer de l'hémoglobine); risque limité à association médicam. (sulfamides par ex.) et déficience congénitale

Contre-indications:

- Hypotension; états de choc
- inhibiteurs
 de phosphodiestérase V
 (sildefanil, tadalafil, vardenafil)
- ⇒ NO +++ (hypotension grave, parfois fatale)

